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In this paper, we study some average properties of hypergraphs and the average complexity 
of algorithms applied to hypergraphs under different probabilistic models. Our approach is 
both theoretical and experimental since our goal is to obtain a random model that is able 
to capture the real-data complexity. Starting from a model that generalizes the Erdös–Renyi 
model [10,11], we obtain asymptotic estimations on the average number of transversals, 
irredundants and minimal transversals in a random hypergraph. We use those results to 
obtain an upper bound on the average complexity of algorithms to generate the minimal 
transversals of a hypergraph. Then we make our random model more complex in order 
to bring it closer to real-data and identify cases where the average number of minimal 
transversals is at most polynomial, quasi-polynomial or exponential.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A hypergraph is a pair H = (V , E) where V = {1, 2, . . . , n} is the set of vertices and E = (E1, . . . , Em) is the collection of 
hyperedges with Ei ⊆ V for all i.

A transversal is a set of vertices that intersects all the hyperedges. A set of vertices X is said to be irredundant if for all 
vertices i ∈ X , there exists a hyperedge H such that H ∩ X = {i}. X is called a minimal transversal when it is a transversal 
and none of its subset is transversal. This is equivalent to being both irredundant and a transversal.

Given a hypergraph H, the set of all its minimal transversals forms a hypergraph called the transversal hypergraph.
The Transversal Hypergraph Generation problem (for short, THG-problem) consists in computing the transversal hyper-

graph of a given hypergraph. In the same way, the associated decision problem (in short, THD-problem) consists in deciding 
if a first hypergraph H1 is the transversal hypergraph of a second one H2. This problem is known to be equivalent to 
the famous dualization of monotone boolean functions problem (see [8]). The Transversal Hypergraph Generation problem 
appears in very different domains: Artificial Intelligence and Logic [6,7], Biology [2], Datamining and Machine Learning [14], 
mobile communications [23], etc. We refer to [15] for a more complete list of applications.

Since a hypergraph may have an exponential number of minimal transversals, the THG-problem does not belong to the 
class of polynomial problems. However, a long standing question is to decide whether there exists an algorithm to solve
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THG whose running time is a polynomial on the size of the hypergraph and on the number of minimal transversal. Such an 
algorithm is called an output-polynomial time algorithm.

The complexity of the THG-problem is closely related to its associated decision problem THD. Precisely, if an output-
polynomial algorithm solves THG, then THD can be solved in polynomial time. In addition, THD is clearly in the class of 
co-NP problems but there is no evidence of its co-NP-completeness. If THD is co-NP-complete, then no output polynomial 
algorithm is likely to exist for the generation problem THG (unless P = co-NP) [6].

The best known algorithm to generate the transversal hypergraph is quasi-polynomial and is due to Fredman and 
Khachiyan in [13]. Its running time is of the form No(log N) with N the size of the input plus the output. Nevertheless, 
this algorithm is not efficient for practical applications. Other algorithmic solutions were proposed and a list of them can be 
found in [9]. In this article, we focus on the MTMiner algorithm defined by Hébert, Bretto and Crémilleux [16]. MTMiner

is closely related to the mining of the frequent patterns in data mining and is clearly output-exponential in the worst-case. 
We will study both average complexity and generic-case [17] output-sensitive complexity of the algorithm.

In the previous quoted results, the complexity of the THG-problem and associated algorithms were mostly studied with 
the worst-case point of view. Indeed, very specific entries were exhibited in order to obtain worst-case lower or upper 
bounds on the behavior of the algorithms. But these entries do not generally occur in practice, and the existing worst-case 
analyses are then not sufficient to understand the practical complexity of THG. In this article, we adopt a probabilistic point 
of view. Though analytic combinatorics is often used to conduct an average case study, the symbolic method [12] (a generic 
method used to describe the recursive decomposition of combinatorial objects) does not seem to be relevant in our case, as 
it cannot be used to describe the patterns we are interested in.

The study of random hypergraphs under various distributions is quite common and one of the most popular is the uni-
form distribution on k-uniform hypergraphs [1,5,19] (in which all hyperedges have the same cardinal k). In [22], the authors 
study the creation and the growth of components with a continuous random hypergraph process. Recently, De Panafieu [3]
studies random non-uniform hypergraphs and their structures near the birth of the complex components. In [24], the 
authors prove that under the uniform distribution over all the simple hypergraphs with n vertices, the THG problem is 
output-polynomial with probability close to 1. In fact, under this distribution, the size of the transversal hypergraph is with 
high probability exponential in n and even the naive algorithm that goes through the whole search space is almost surely 
output-polynomial. To the best of our knowledge, this is the only study on the average complexity of the THG problem.

In this paper, we consider two random models in which the number n of vertices and the number m of hyperedges are 
given and suppose that m is a polynomial in n. The results we obtain are original and do not intersect with [24].

Plan of the paper: Section 2 is devoted to the probabilistic models we consider. In Section 2.1, we introduce a single-
parameter model that generalizes the Erdös–Renyi model [10,11]. In Section 2.2, we make our random model more complex 
so that the probability that each vertex appears in a hyperedge is given by a function. Section 3 summarizes the asymp-
totic results we obtain with the single-parameter model on the average number of transversals, irredundants and minimal 
transversals. Section 4 is devoted to the results with the second probabilistic model. Section 5 is devoted to algorithms 
analysis. We study the average complexity of the MTMiner algorithm and the generic-case complexity of the THG-problem. 
The average complexity of MTMiner is closely related to the average number of irredundants: we obtain upper bounds on 
the average complexity for both models. Section 6 is devoted to experimental results. Using hypergraphs obtained from real 
datasets, we discuss the consistency of our random models. Section 7 contains all the proofs of the main results. Conclusion 
is devoted to perspectives and indications on a random model that might be interesting for a future work.

2. Probabilistic models for hypergraphs

In this paper, we study the average properties of hypergraphs under two probabilistic models. For both models we 
suppose that:

• The number of hyperedges m is at most polynomial in the number of vertices n, precisely ln m = �(ln n). Some of our 
results do not require this assumption and can therefore be extended to cases where m is exponential in n (ln m = �(n)). 
In this case, most questions we study in this paper become trivial.

• A hypergraph with n vertices and m hyperedges can be seen as a binary matrix M(H) = (mi, j(H))i=1..m, j=1..n . Each row 
in the matrix encodes a hyperedge. The value mi, j at line i and column j is equal to 1 if the vertex j belongs to the 
hyperedge encoded in row i, mi, j = 0 otherwise.

• The variables (mi, j(H))i=1..m, j=1..n form an independent family of random variables. In other words, the event that 
a given vertex v appears in a given hyperedge is independent from the event that a vertex u appears in the same 
hyperedge or from the event that v appears in another hyperedge.

2.1. The single-parameter model

We first introduce our simplest model which is close to the Erdös–Renyi model [10,11] for graphs.

Definition 1 (HG(n,m,p) random model). The HG(n, m, p) model supposes that the family of random variables
(mi, j)i=1..m, j=1..n forms an independent and identically distributed family of random variables following the same Bernoulli 
law of parameter p (0 < p < 1) with 1 − e− 1

ln n < p < e− 1
ln n .
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The bounds on p are rather technical but they will be useful in the multiparametric model. The single-parameter model 
entails that all the vertices have the same behavior. This is a non-realistic hypothesis but this simple model allows a precise 
probabilistic analysis of the minimal transversal problem. In addition, the results we obtain can be used for analyses in the 
more realistic multiparametric model that we now introduce.

2.2. Multiparametric model

We no longer consider that the vertices occur in a hyperedge with the same probability. As we will show in Section 6, 
this is much more consistent with real-case datasets.

Definition 2 (HG(n, m, g) random model). A hypergraph H with m hyperedges and n vertices is seen as a binary matrix 
M(H) = (mi, j(H))i=1..m, j=1..n . The HG(n, m, g) model supposes that the family of random variables (mi, j)i=1..m, j=1..n forms 
an independent family of random variables. In addition, for all i, j, the random variable mi, j follows a Bernoulli law of 
parameter p j = g( j) (and q j = 1 − g( j)) with g :N → [0, 1].

The asymptotic analyses show that the role of a vertex v is different depending on whether its probability pv is large or 
small. Precisely, we partition the set V into 3 subsets:

• The set U of ubiquitous vertices. Let x be a fixed constant. For all vertices u ∈ U , we have that qu < x
m with qu = 1 − pu .

• The set R of rare events. For all vertices r ∈ R , we have that pr < 1 − e− 1
ln n . Note that this implies that pr < 1

ln n . The 
latter bound slowly tends to zero and is relevant on experimental data (see Section 6), the former simplifies calculus.

• The set O of other events, that is O  = V \ {U ∪ R}.

We mainly use this decomposition to study the average number of minimal transversals in the HG(n, m, g) model. In par-
ticular, we prove that the number of rare events is an important parameter to control the number of minimal transversals.

3. Main results with the single parameter model

A minimal transversal is both a transversal and irredundant. Then for each probabilistic model, we precisely describe the 
average behavior of the number of transversals, of the number of irredundants and of the number of minimal transversals. 
Based on these results, we study in Section 5 the average complexity of the MTMiner algorithm [16] that computes the 
transversal hypergraph. We conclude with an average point of view on the Transversal Hypergraph Generation problem. 
This section is devoted to the single parameter model whereas Section 4 deals with the multiparametric model. The proofs 
relative to this section are rather technical with mainly asymptotic calculations. In addition, they are not fundamental for 
the understanding of the results. This is why they are given in the last section (Section 7).

3.1. On the average number of transversals

In the following, T j is the number of transversals of size j on a given hypergraph. Recall that, a given subset X ⊆ V of 
vertices is a transversal if for all hyperedges H of the hypergraph, there exists at least one vertex v ∈ X such that v ∈ H . 
We note q = 1 − p, the probability that a vertex does not appear in a hyperedge and that m is the number of hyperedges. 
The probability for a subset X of size j to be a transversal is therefore:

P(X is a transversal) = (1 − q j)m.

The following results, obtained by simple calculations on this probability, describe the asymptotic of T j in function of j. The 
1
q in the formula are the basis of the logs.

Proposition 1. In the HG(n,m,p) random model, consider j of the form

j = log 1
q

m + log 1
q

x, x ∈
]

1

m
,+∞

[
.

1. If x ≤ 1/ log 1
q
(m ln n), the average number of transversals E[T j] tends to 0.

2. If x tends to 0 (with x lower bounded by 1/m in order for j to remain positive), the number of transversals is negligible compared 
to the number of subsets of the same size, i.e. E[T j] = o 

((n
j

))
.

3. If x = �(1), only a constant proportion of all sets of j vertices is a transversal, i.e., E[T j] ∼
(n

j

)
exp(−1/x).

4. If x tends to +∞, almost every sets of j vertices is a transversal, i.e., E[T j] ∼
(n

j

)(
1 − 1

x

)
.
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Fig. 1. We represented the boolean lattice on the set of vertices. As we will show in the following section, according to the size of the subsets, we can 
estimate the proportion of transversals. Above a given size, we also have a result on the standard-deviation.

Intuitively, the set of minimal transversals will mostly be included in cases 2 and 3. Indeed, in case 4, the probability 
that a given transversal does not contain a subset of case 3 which is also transversal, will intuitively be low, since the filter 
of transversals in case 3 will contain a huge number of transversals of case 4.

When j is sufficiently large, the next proposition shows that the standard deviation of T j is negligible compared to 
its mean. Combined with Bienaymé–Chebyshev’s inequality, this proves that the number of transversals of size j is almost 
surely equivalent to the mean number. This result will be fundamental to obtain an almost sure lower bound on the number 
of minimal transversals.

Proposition 2. In the HG(n,m,p) random model, the standard deviation of the number of transversals of size j with j > log 1
q

mp
ln ln n

satisfies

σ [T j] = O
(
E[T j] ln n√

n

)
.

The results of Propositions 1 and 2 are summarized in Fig. 1. The proofs of the propositions are given in Section 7.2.

3.2. Upper bound on the average number of irredundants

A subset X is irredundant if for all vertex i ∈ X , there exists a hyperedge H such that H ∩ X = {i}. For fixed X of 
cardinality j, fixed i and H , the probability that H ∩ X = {i} is pq j−1. For fixed X and H , the probability that �i ∈ X such 
that H ∩ X = {i} is equal to 1 − jpq j−1. If X is an irredundant then there exists a tuple (k1, . . . , k j) of positive value (i.e. at 
least 1) where ki is the number of hyperedges H such that H ∩ X = {i} and the probability that X is an irredundant set is 
equal to: ∑

∀i ≤ j, ki ≥ 1
k1 + . . . + k j = �

j ≤ � ≤ m

(
m

k1, . . . ,k j

)
(pq j−1)� · (1 − jpq j−1)m−�

The next proposition states that the average number of irredundants is quasi-polynomial.

Proposition 3. The average number of irredundants in a random model HG(n,m,p) is, for all ε > 0, of order

O

⎛
⎜⎝

⎛
⎝(1 + ε)

2pe2

q2

mn

log 1
q

nm

⎞
⎠

1
2 j0

⎞
⎟⎠ ,

where

j0 =
⌈

1

2
log 1

q
mn − 1

2
log 1

q
log 1

q
mn + 1

2
log 1

q
2p

⌉
and �x� denotes the smallest integer greater or equal to x (ceiling).
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We did not succeed in performing a precise analysis of the average number of irredundants in function of their size. 
However, this result is sufficient to give an upper bound on the complexity of the MTMiner algorithm. The proof is rather 
technical and is given in Section 7.3.

3.3. Upper and lower bounds on the average number of minimal transversals

In the sequel, MT (resp. MT j) is the random variable equal to the number of minimal transversals (resp. of size j). It is 
known that in the worst case, the number of minimal transversals may be exponential with respect to the size of the input 
hypergraph. However, for the “naive” uniform distribution on hypergraphs, the number of minimal transversal is almost 
surely at most linear in the size of the hypergraph. As far as we know, the HG(n,m,p) model leads to the first non-trivial
bound on the average number of minimal transversals, as announced by the next theorem.

Theorem 1. Consider the random model HG(n,m,p) with m = βnα , β > 0 and α > 0. There exist a positive constant c := c(α, β, p)

such that the average number of minimal transversals is

O
(

n
d(α) log 1

q
m+c ln ln m

)
,

with d(α) = 1 if α ≤ 1 and d(α) = (α+1)2

4α otherwise.

The proof can be found in Section 7.4. Once more, we did not succeed in studying the average number of minimal 
transversals in function of their size. Theorem 1 gives an upper bound on the average size of the output of the Transversal 
Hypergraph Generation problem. Using the Markov Inequality, it entails an almost sure upper bound on the size of the 
output. In order to prove that, in average, the Transversal Hypergraph Generation problem is output polynomial, we also 
need to control the size of the output and find a generic lower bound (i.e. a lower bound which is true with probability 
close to 1). A generic lower bound is often obtained by studying the moments of higher order or the variance. We did not 
succeed in studying the higher moments of the number of minimal transversals. However, we relate the number of minimal 
transversals to the number of transversals of a certain size and use the concentration property given in Proposition 2. We 
obtain the following proposition whose proof can be found in Section 7.5.

Proposition 4. Consider ε with 0 < ε < 1. In the random model HG(n,m,p), the number MT of minimal transversals satisfies

P(MT < εE[Tl]) = o(1)

where Tl is the set of transversals of size l = log 1
q

mp
ln n + 1.

Inserting l in the expression of E[Tl] =
(n

l

)
(1 − ql)m entails the following corollary.

Corollary 1. In the random model HG(n,m,p), the number of minimal transversals is almost surely greater than

= �

⎛
⎜⎝ 1

(log 1
q

m)3/2 ln n

⎛
⎝ e · n

log 1
q

mp
ln n + 1

⎞
⎠

log 1
q

mp
ln n

⎞
⎟⎠

4. Main results with the multiparametric model

The HG(n, m, g) random model no longer considers that the vertices occur in a hyperedge with the same probability. 
Precisely, a vertex j belongs to a hyperedge with probability p j = g( j) (q j = 1 − g( j)) with g : N → [0, 1]. Under this model, 
the role of the vertices may be different. Recall that we partition the set of vertices V into 3 subsets:

• The set U of ubiquitous vertices where for all u ∈ U , qu < x
m for some fixed constant x,

• the set R of rare events where for all r ∈ R , pr < 1 − e− 1
ln n ,

• and the set O of other events, that is O  = V \ {U ∪ R}.

4.1. A lower bound on the average number of transversals

In the HG(n, m, g) model, let μ the average value of the images of the function g . In other words:

μ =
n∑

i=1

qi

n
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Proposition 5. In the HG(n, m, g) model, the average number of transversals is lower bounded by 2n − m(1 + μ)n.

Proof. The average number of transversals is given by the following formula:

E[T ] =
n∑

j=0

∑
X⊂V
|X|= j

(1 −
∏
i∈X

qi)
m.

Using the Bernoulli inequality, we have:

E[T ] ≥
n∑

j=0

∑
X⊂V
|X|= j

(1 − m
∏
i∈X

qi) ≥ 2n − m
n∑

j=0

∑
X⊂V
|X|= j

∏
i∈X

qi = 2n − m
n∏

i=1

(1 + qi)

Then, according to the geometric inequality we have

n∏
i=1

(1 + qi) ≤
(

n∑
i=1

1 + qi

n

)n

and therefore

E[T ] ≥ 2n − m(1 + μ)n

which concludes the proof. �
4.2. Upper bounds on the average number of irredundants

This sections gives various upper bounds on the average number of irredundants. Since a minimal transversal is irredun-
dants, the next proposition also gives upper bounds on the number of minimal transversals.

Proposition 6. In the HG(n, m, g) model, we have the following bounds:

1. The average number of irredundants (and then, of minimal transversals) is bounded by O(mn(1 +μ)n).
2. The average number of irredundants containing only vertices in O  ∪ U is

O((nm ln
√

nm)
1
4 ln n(ln nm−2 ln ln n−ln ln

√
mn))

3. If |R| =O((ln n)c) where c is a constant, then the number of irredundants is quasi-polynomial.
4. The probability to have a polynomial number of irredundants containing ubiquitous vertices tends to 1.

The proof can be found in Section 7.6. Result 1 in Proposition 6 is not precise but it has a certain advantage: starting 
from a complex model with a large number of parameters, we now have an estimation that relies on only 3 parameters. It 
can also be easily interpreted: if μ tends to 0 then almost all vertices appears in almost all hyperedges, hyperedges are all 
similar. In this case, there is few minimal transversals. If μ tends to 1 then almost each vertex appears in few hyperedges, 
hyperedges are all really different, that is to say the pairwise intersection of hyperedges is always small and there is an 
exponential number of minimal transversals.

The results 2 and 3 make the role of the rare events more precise in the average number of irredundants. Precisely if 
there is no rare event or if it is polylogarithmic in n, then number of irredundants is quasi-polynomial in n. Result 4 entails 
that ubiquitous vertices only have a polynomial role in the asymptotic number of irredundants.

4.3. On the average number of minimal transversals

Recall that M denotes the number of minimal transversals. Since the upper bounds obtained in Proposition 6 also hold 
for minimal transversals, we obtain the following theorem.

Theorem 2. In the HG(n, m, g) model, we have the following:

• If |O  ∪ R| =O(ln n), then E[M] is at most polynomial.
• If |R| =O((ln n)c) where c is a constant, then E[M] is at most is quasi-polynomial.
• If |R| = �(n), then E[M] is at most exponential on |R|.

The first point comes from Proposition 6 and the fact that the number of minimal transversals of a set of size c ln n is nc .
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Algorithm 1: The MTMiner-algorithm.
Data: a hypergraph H with m hyperedges
Result: the minimal transversals of H

1 MT := {{v}| v ∈ V , {v} is a transversal};
2 N1 := {{v}| v ∈ V \ MT, v belongs to at least one hyperedge};
3 j = 1;
4 while N j �= ∅ do
5 forall the prefix V with V ∪ {v1}, V ∪ {v2} ∈ N j do
6 W = V ∪ {v1} ∪ {v2};
7 if W is irredundant then
8 if W is a transversal then
9 add W to MT;

10 else
11 add W to N j+1;

12 j = j + 1;

13 return MT;

5. Algorithm analysis

In this section we study the average complexity of the MT-Miner algorithm. The worst-case input complexity of this 
algorithm is a polynomial in n times the number of irredundants. The analysis we perform and the results we obtain are 
also valid on any algorithm whose search space is bounded by the set of irredundants: Apriori, Dong–Li algorithm [4], 
Kavvadias–Stavropoulos [18], Uno–Murakami [20].

5.1. Average complexity of the MT-Miner algorithm

The MTMiner algorithm was described by Hébert, Bretto and Crémilleux in [16]. The algorithm computes all the min-
imal transversals of a given hypergraph using a levelwise strategy. Precisely at the jth level, the algorithm computes the 
irredundants formed with j vertices. Among the irredundants, some are minimal transversals and are stored in a data struc-
ture. The others are not minimal transversals but they might be part of one and they are used to build irredundants of 
size j + 1.

Each irredundant of size j can be extended in at most n − j sets of size j + 1 and the minimality of each candidate set 
can be tested in polynomial time (w.r.t. the input size). MTMiner uses a prefix tree to optimize this generation step but 
even with the naive method (generate all the possible extensions), the complexity of MTMiner is O (Poly(m, n)N) where N
is the number of irredundants. (See Algorithm 1.)

A non-trivial upper bound on the average complexity of MTMiner follows from Proposition 3.

Proposition 7. In the HG(n, m, p) model, there exist some positive constant c such that the average complexity of MTMiner is

O
(

(mn log 1
q

√
nm

p

q2
)

1
4 (log 1

q
nm−logq p−log 1

q
log 1

q

√
nm)+c

)
.

An equivalent result can be obtained in the HG(n, m, g) model using Proposition 6 item 3.

Proposition 8. In the HG(n, m, g) model, if |R| =O((ln n)c) where c is a constant, then the average input-complexity of MTMiner is 
at most quasi-polynomial.

Since MTMiner generates at least all the minimal transversals, its complexity is lower bounded by M . The generic lower 
bounds given by Proposition 5 and Corollary 1 entail a generic lower bound on the complexity of MTMiner.

5.2. Generic-case complexity of the THG-problem

The notion of generic-case complexity is defined in [17]. The idea is to study the worst-case complexity of an al-
gorithm on a generic-subset of inputs. In a given random model, a subset E of inputs is said to be generic if the 
probability that a random input is in E tends to 1. The study of generic complexity is particularly interesting when 
no polynomial method is known to solve a problem in the general case (NP-complete problems, undecidable prob-
lems [21]), whereas there seem to be efficient methods in practice. The theoretical complexity of the THG-problem was 
discussed in the introduction. In particular, it is not known whether the problem is output-polynomial in the worst-
case. The following theorem states that with probability that tends to 1 in the single-parameter model, the algorithm 
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MTMiner is output-polynomial. In other words, the set of inputs for which the algorithm is output-polynomial is a generic 
set.

Theorem 3. Consider the random model HG(n,m,p) with m = βnα , β > 0 and α > 0. Under this model, the generic complexity of 
the THG-problem is output-polynomial. Precisely, there exist an algorithm (MTMiner) such that for all ε > 0, the algorithm computes 

the minimal transversals of an input hypergraph in time Mε+ (α+1)2
4α with probability asymptotically 1 and where M is the number of 

minimal transversals.

Proof. To simplify the notations, we write γ = ε + (α+1)2

4α and a = 1
2E[T j] with j as in Proposition 4. We have

P(D > Mγ )

= P([D > Mγ ] ∩ [M < a]) + P([D > Mγ ] ∩ [M ≥ a])
≤ P(M < a) + P(D ≥ aγ )

= O

(
ln2 mn

n

)
+ E[D]

aγ

Alternative expressions for aγ and E[D] are

E[D] = n
(α+1)2

4α log 1
q

m+O (ln ln m)
,

aγ = n
(ε+ (α+1)2

4α ) log 1
q

m+O (ln ln m)
.

In particular, E[D]/aγ is O (n
− ε

2 log 1
q

m
) when γ > ε + (α+1)2

4α and the O-term tends to 0. This completes the proof. �
6. Comparison with real data

The following benchmark were made using datasets from the Frequent Itemset Mining Dataset Repository,1 that are 
often used by the datamining community. The experimental results that we exhibit might therefore be well known 
by specialists. The objective of this section is to exhibit the links between real datasets and our probabilistic mod-
els.

We only present a selection of experimental results, that is already able to capture the diversity of hypergraphs in various 
contexts. It is important to note that for each example presented in this paper, one can find several datasets satisfying the 
same properties.

From Fig. 2 to Fig. 5, the histograms on the left side represent the number of hyperedges in which each vertex appears. 
Vertices are sorted according to the decreasing order of the number of hyperedges in which they appear. Histograms on the 
right side represents the size of hyperedges in each hypergraph.

• mushroom.dat: contains a few ubiquitous vertices and a few rare vertices. All the hyperedges have the same size. Those 
kinds of datasets validate the choice of most study to focus on k-uniform hypergraphs.

• accident.dat: contains a few ubiquitous vertices and a lot of rare vertices. The size of hyperedges seems to follow a 
Gaussian distribution.

• pumsbstar.dat: does not contain ubiquitous vertices and most vertices are rare.
• T10I4D100K.dat: all vertices are rare. Again, the size of hyperedges seems to follow a Gaussian distribution.

Our probability models seem to be more appropriate on the second and the fourth example, as the size of the hyperedges 
seems to follow a Gaussian distribution.

In our experiments, the generation of the minimal transversals were efficient on databases that have similar distribution 
to mushroom.dat. This result comforts us in the belief that the presence of rare events is the main parameter (by opposition 
to being just an important parameter amongst others) to decide whether the number of the minimal transversals is going 
to explode. Fig. 6 shows the distribution of the minimal transversals in mushroom.dat. As we can see, the number of min-
imal transversals Tmin, j of a given size j is maximal when j = 16 and Tmin,16 ∼ 6 × 106. Using the model H(n, m, g) and 
Theorem 2, we could foretell that in cases accidents.dat, pumsbstar.dat, T10I4D100K.dat the number of minimal transversals

1 http://fimi.ua.ac.be/data/.

http://fimi.ua.ac.be/data/
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Fig. 2. mushroom.dat (119 vertices, 8124 hyperedges).

Fig. 3. accidents.dat (468 vertices, 340 183 hyperedges).

Fig. 4. pumsbstar.dat (7116 vertices, 49 046 hyperedges).

explodes, which seems indeed to be the case. Even after a long time execution (more than a week) on a regular computer, 
only a small proportion of the search space had been visited, whereas the number of minimal transversals was tremen-
dously huge. We also tried to write the minimal transversals in a file: within a day, the program stopped because our 
500 Go hard drive was full.
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Fig. 5. T10I4D100K.dat (999 vertices, 100 000 hyperedges).

Fig. 6. Minimal transversals of mushroom.dat.

7. Proofs

7.1. Proof of Proposition 1

Proposition 1 describes the evolution of the number of transversals with respect to their size. Recall that T j denotes the 
number of transversals of size j, m is the number of hyperedges and q = 1 − p is the probability that a vertex does not 
appear in a hyperedge. The probability for a subset X of size j to be a transversal is

P(X is a transversal) = (1 − q j)m

so that the average number of transversals of size j satisfies

E[T j] =
(

n

j

)
(1 − q j)m =

(
n

j

)(
1 − 1

mx

)m

with j = log 1
q

m + log 1
q

x as in the proposition.

Case 1. We have j ≤ jmin with

jmin = log 1
q

m − log 1
q

log 1
q
(m ln n) .

The mean E[T j] satisfies the bound

E[T j] ≤ n je−mq j ≤ e jmin ln n−mq jmin
.

Now, the expression in the exponent simplifies into
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jmin ln n − mq jmin = − ln n × (log 1
q

log 1
q

m + log 1
q

ln n)

which tends to −∞ and completes the proof of Case 1.

Case 2. If x tends to 0, we have(
1 − 1

mx

)m

≤ exp
(
− m

mx

)
= exp

(
−1

x

)

which tends to 0. Then, E[T j] = o 
((n

j

))
.

Case 3. If x = �(1), we have the equivalence(
1 − 1

mx

)m

= exp

(
− m

mx
+ O (

1

mx
)

)
∼ exp

(
−1

x

)

and E[T j] ∼
(n

j

)
exp

(
− 1

x

)
.

Case 4. If x tends to +∞, the previous equivalence remains true and e−1/x ∼ 1 − (1/x). To conclude if x tends to 0, we have 
E[T j] ∼

(n
j

)(
1 − 1

x

)
.

7.2. Proof of Proposition 2

We want to prove that in the HG(n,m,p) random model, the standard deviation of the number of transversals of size j
satisfies

σ [T j] = O
(
E[T j] ln n√

n

)

as soon as with j > log 1
q

mp
ln ln n .

For any set of vertices X , χX is an indicator random variable which equals to 1 if X is a transversal and 0 otherwise.
Consider j ≥ 1. The variance of T j is by definition

V(T j) =
∑

X, Y ⊂ V
|X | = |Y | = j

P[χXχY = 1] − P[χX = 1]P[χY = 1].

If X and Y are disjoint, the random variables χX and χY are independent and the associated term in the previous sum is 
zero. We are then led to study non-disjoint subsets of vertices. If X and Y are non-disjoint, we define I , J and K as

K = X ∩ Y , I = X\Y , J = Y \X .

Note that if X and Y have the same cardinality, then the same is true for I and J . Therefore we note |K | = k and |I| = | J | =
j − k. The support of K , noted E ′ ⊆ E , is the set of hyperedges that intersect K . If X and Y are transversals, then each of 
I and J intersect all the hyperedges of E\E ′ . For a fixed set E ′ , the probability to be K ’s support is qk·(m−|E ′|)(1 − qk)|E ′| . 
The probability that I (resp. J ) intersects all the hyperedges of E\E ′ is (1 − q j−k)m−|E ′| . Summing over all the possible 
cardinalities for E ′ , we obtain

P[χX = χY = 1] =
m∑

�=0

(
m

�

)
(1 − qk)�qk(m−�)(1 − q j−k)2(m−�)

= (1 − 2q j + q2 j−k)m

For fixed j and k, there are 
( n

k, j−k, j−k

)
possible choices for the sets I , J and K . The probability that X (or Y ) is a transversal 

is (1 − q j)m , and summing over all the possible k, we obtain

V(T j) =
j∑

k=1

(
n

k, j − k, j − k

)[
(1 − 2q j + q2 j−k)m − (1 − q j)2m

]
.

Various cases are now possible.
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Case (i). j > log 1
q

mn. Then

(1 − 2q j + q2 j−k)m − (1 − q j)2m = O
(

1

n

)

where the constant term in O only depends on n and not on j. In addition,

j∑
k=0

(
n

k, j − k, j − k

)
=

(
n

j

)2

so that, using Proposition 1 with j > log 1
q

mn, the variance satisfies

V(T j) = O
(

1

n

(
n

j

)2
)

= O
(

1

n
E[T j]2

)

and the random variable T j is concentrated.2

Case (ii). If log 1
q

mp
ln ln n ≤ j ≤ log 1

q
mn. The variance satisfies the upper bounds

V(T j) ≤
j∑

k=1

(
n

k, j − k, j − k

)
(1 − 2q j + q2 j−k)m

≤
j∑

k=1

(
n

k, j − k, j − k

)
exp(−2mq j + mq2 j−k).

Let αk denotes the k-th term of this sum. The ratio of two consecutive αk is upper bounded by

αk+1

αk
≤ j2

2(n − 2 j + 2)
empq j ≤ log2 mn

2(n − 2 log mn + 2)
empq

log 1
q

(
mp

ln ln n

)

≤ eln ln n log2 mn

2(n − 2 log2 mn + 2)
= O

(
ln2 n

n

)

The variance satisfies V(T j) ∼ α1 since jα2 = o(α1), for log 1
q

mp
ln ln n ≤ j ≤ log 1

q
mn. Now, we have

V(T j) ∼ e−2mq j n2 j−1

( j − 1)!2 ∼ j2

n
E[T j]2.

The result follows for case (ii) and the proof is complete.

7.3. Proof of Proposition 3

We study a function that bounds the number of irredundants by considering the following necessary condition: let 
X = {x1, . . . , x j}, a selection is a set {E1, . . . , E j} of hyperedges such that Ei ∩ X = {xi} for all i ≤ k (therefore j ≤ min(m, n)). 
X is an irredundant set if and only if there exists a selection in the hypergraph.

For each of the 
(n

j

)
subsets of size j, if one can find j hyperedges amongst m such that each hyperedge contains one 

vertex and not the others (the order on hyperedges is not specified), then the condition is satisfied. This occurs with 
probability 

(
pq j−1

) j
. The average number of irredundants of size j is therefore bounded by the function

f ( j) =
(

n

j

)
m!

(m − j)!
(

pq j−1
) j

.

In order to exhibit the value j for which f ( j) is maximal, we study the ratio

f ( j + 1)

f ( j)
= (m − j)(n − j)

j + 1
pq2 j .

It is decreasing with j and then, the maximum of f is given by the smallest integer j such that the ratio is smaller than 1. 
Now, consider j0 of the form

2 That is, the standard deviation is negligible compared to the mean.
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j0 = 1

2
log 1

q
mn + 1

2
log 1

q

2px

log 1
q

mn

with x ∈ [1, 1q [ the smallest real such that j0 is an integer. Simple asymptotic computations give

f ( j0 + 1)

f ( j0)
= (m − j0)(n − j0)

j0 + 1
pq2 j0

∼ 2mn

log 1
q

mn
p

log 1
q

mn

2pxmn

= 1

x
.

In the same way, we obtain

f ( j0)

f ( j0 − 1)
∼ 1

q
x > 1.

This implies that f ( j) is maximal when j = j0. In addition, for j = j0 + j′ with | j′| < αn and αn = o( j0), the ratio r( j) =
f ( j + 1)/ f ( j) decreases geometrically by a factor q2 as j increases (r( j + 1)/r( j) ∼ q2) so that the number of irredundants 
is bounded by

min(m,n)∑
j=1

f ( j) ∼
αn∑

j=−αn

f ( j0 + j) = O
(

1

1 − q2
f ( j0)

)

with αn = o( j0). Since p > 1 − e−1/ ln n , the number of irredundants is also of order of order O ( f ( j0) ln n). The Stirling 
formula combined with the insertion of j0 into the expression of f ( j) give the next equivalence for f ( j0),

f ( j0) ∼ n j0m j0

j0!
(

p

q
q j0

) j0

= 1√
2π j0

⎛
⎝ e

j0q

√
mnp log 1

q
mn

2x

⎞
⎠

j0

Writing j0 = (1 − ε) 1
2 log 1

q
mn with ε =

log 1
q

log 1
q

mn−log 1
q

2px

log 1
q

mn , which tends to 0, is sufficient to obtain the announced result.

7.4. Proof of Theorem 1

In the sequel, MT (resp. MT j ) is the random variable equal to the number of minimal transversals (resp. of size j). We 
consider once again a function that bounds the number of minimal transversals. A set X is a minimal transversal if and 
only if:

1. there exist a selection E ′ for X ,
2. for all F ∈ E\E ′ , |F ∩ X | ≥ 1.

The probability that Condition 1 holds is (pq j−1) j whereas the probability that Condition 2 holds is (1 − q j)m− j . There 
are 

(n
j

)
sets of vertices of size j and each of them have m!

(m− j)! possible selections. Then, the average number of minimal 
transversals of size j is bounded by h( j) with

h( j) =
(

n

j

)
m!

(m − j)! (pq j−1) j(1 − q j)m− j.

We now determine the j that maximizes h( j). The ratio h( j+1)
h( j) satisfies

h( j + 1)

h( j)
= (m − j)(n − j)

j + 1

p

1 − q j
q2 j

(
1 + pq j

1 − q j

)m− j−1

As in the previous section, this ratio is also decreasing. The maximum of h( j) is given when the ratio equals to 1. Two cases 
are now possible according to the value of α.
Case α ≤ 1. Suppose j = j(x) is of the form

j(x) = 1

2
log 1

q

2pmnx

log 1 mn

q
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and x = �(1). Then, the next relations hold (we omit the variable x):

q2 j =
log 1

q
mn

2pmnx
and j ∼ 1

2
log 1

q
mn

(here, the hypotheses on p and then q are important). Inserting these relations in the ratio h( j + 1)/h( j) and using equiva-
lences, we obtain

h( j + 1)

h( j)
∼ 2mn

log 1
q

mn
p

log 1
q

mn

2pxmn
exp

⎛
⎝mp

√
log 1

q
mn

2pxmn

⎞
⎠ .

Since α < 1, the term in the exponential tends to 0 so that h( j+1)
h( j) ∼ 1

x . Then, the maximum of h is given for j = � j(1)� and 
the average number of minimal transversals satisfies

E[M] ≤
n∑

j=1

h( j) = O (nh(� j(1)�)).

But an equivalence of h( j) around j = � j(1)� is

h( j) ∼ n jm j

j!
(

p

q
q j

) j

= exp

(
j ln mnq j + O

(
j ln j + j ln

p

q

))
.

But,

j = 1 + α

2α
log 1

q
m + O

(
log 1

q
ln n

)
and

ln mnq j = 1 + α

2
lnn + O (ln ln n)

and the product gives

h( j) = exp

(
(1 + α)2

4α
(ln n) log 1

q
m + O

(
(ln lnn) log 1

q
n
))

.

This completes the proof when α < 1.

Case α > 1. Suppose j = j(x) is of the form

j(x) = log 1
q

pm

x ln m
n

.

Then,

q j = x ln m
n

mp
and j ∼ log 1

q
m

(once more, the hypotheses on p and then q are important). When we insert these relations into the ratio h( j + 1)/h( j), 
we obtain

h( j + 1)

h( j)
∼ mn

log 1
q

m
p

x2
(
ln m

n

)2

m2 p2
exp

(
mp

x ln m
n

mp

)

∼ x2
(
ln m

n

)2

p log 1
q

m

(m

n

)x−1
.

Then, the maximum of h is given for x close to 1 (when j = � j(1)�) so that the average number of minimal transversals 
satisfies

E[M] ≤
n∑

j=1

h( j) = O (nh(� j(1)�)).

Around j = � j(1)�, h( j) verifies
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h( j) ∼ n jm j

j!
(

p

q
q j

) j

exp(−mq j) = exp

(
j ln mnq j + O

(
j ln j + j ln

p

q
+ 1

p
ln n

))
.

Now, the next relations hold:

j = log 1
q

m + O
(

log 1
q

ln n
)

and

ln mnq j = lnn + O (ln ln n)

and the product gives

h( j) = exp
(
(ln n) log 1

q
m + O

(
(ln lnn) log 1

q
n
))

.

This completes the proof when α > 1.

Case α = 1. Suppose j = j(x) is of the form

j(x) = log 1
q

pm

x ln log 1
q

m
.

Then,

q j =
x ln log 1

q
m

mp
and j ∼ log 1

q
m

(again, the hypotheses on p and then q are important) and the ratio h( j + 1)/h( j) satisfies

h( j + 1)

h( j)
∼ mn

log 1
q

m
p

x2
(

ln log 1
q

m
)2

m2 p2
exp

(
mp

x ln log 1
q

m

mp

)

∼
x2

(
ln log 1

q
m

)2

βp

(
log 1

q
m

)x−1
.

Then, the maximum of h is given for x close to 1 (when j = � j(1)�) so that the average number of minimal transversals 
satisfies

E[M] ≤
n∑

j=1

h( j) = O (nh(� j(1)�)).

Around j = � j(1)�, h( j) verifies

h( j) ∼ n jm j

j!
(

p

q
q j

) j

exp(−mq j) = exp

(
j ln mnq j + O

(
j ln j + j ln

p

q
+ 1

p
ln log 1

q
n

))
.

Now, the next relations hold:

j = log 1
q

m + O
(

log 1
q

ln n
)

and

ln mnq j = lnn + O (ln ln n)

and the product gives

h( j) = exp
(
(ln n) log 1

q
m + O

(
(ln lnn) log 1

q
n
))

.

This completes the proof when α = 1.
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7.5. Proof of Proposition 4 and Corollary 1

Proof of Proposition 4. Recall that MT (resp. MT j) is the random variable equal to the number of minimal transversals (resp. 
of size j). MT is lower bounded by M j , the number of minimal transversals of size j. Among the T j transversals of cardi-
nality j, MT j are irredundant and T j − MT j are supersets of transversals of cardinality j − 1. By definition, there are T j−1
transversals with cardinal j − 1 and each of these transversals can be completed in at most n − j + 1 transversals of cardinal 
j. We deduce the inequalities

MT ≥ MT j and T j − (n − j + 1)T j−1 ≤ MT j ≤ T j. (1)

The lower bound entails that for all 0 < ε < 1,

P(MT j ≤ εE[T j]) ≤ P(T j − (n − j + 1)T j−1 ≤ εE[T j])
= P(T j ≤ εE[T j] + (n − j + 1)T j−1)

≤ P
(
T j < ε(E[T j] + (n − j + 1)E[T j−1])

) + P(T j−1 < εE[T j−1])

Consider l = log 1
q

mp
ln n + 1. We have

(n − l + 1)
E[Tl−1]
E[Tl] = l

(
1 − pql−1

1 − ql

)m

.

Since 
(

1 − pql−1

1−ql

)m
is upper bounded by e−mpql−1

(1 − ql tends to 1) then

E[Tl] + (n − l + 1)E[Tl−1] = E[Tl]
(

1 + O

(
ln m

n

))

the Chernoff inequality implies that

P(MTl < εE[Tl]) ≤ e− E[Tl−1](1−ε)2

2 + e− E[Tl ](1−(ε+εO( ln m
n )))2

2

Since MT is lower bounded by MTl , this completes the proof of Proposition 4.

Proof of Corollary 1. The lower bound comes from E[Tl] with l = log 1
q

mp
ln n + 1.

E[Tl] =
(

n

l

)
(1 − ql)m ≥ nl−1

l! e−qlm

According to the Stirling formula we have

∼ e√
2π l3/2

(e · n

l

)l−1
e−qlm

Then if we replace l by log 1
q

mp
ln n + 1

∼ e√
2π(log 1

q

mp
ln n + 1)3/2

·
⎛
⎝ e · n

log 1
q

mp
ln n + 1

⎞
⎠

log 1
q

mp
ln n

· 1

lnne
q
p

= �

⎛
⎜⎝ 1

(log 1
q

m)3/2 lnn

⎛
⎝ e · n

log 1
q

mp
ln n + 1

⎞
⎠

log 1
q

mp
ln n

⎞
⎟⎠
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7.6. Proof of Proposition 6

Recall that Proposition 6 gives various bounds on the average number of irredundants.

Proof of 1. From Proposition 5 we obtain an upper bound on the average number of subset that are not transversals, that 
is to say O(m(1 + μ)n). In the worst case, all those sets are irredundant. Notice furthermore that any minimal transversal 
might be obtained from some of those sets by adding a vertex. Therefore, we multiply by n in order to obtain an upper 
bound.

Proof of 2. In order to obtain an upper bound, we use the result in Proposition 3. In the HG(n, m, p) model, the upper 
bound on the average number of irredundants decreases as p increases. Recall that for all vertices a ∈ O∪U , we have 
pa ≥ 1 − e− 1

ln . The average number of irredundants in the HG(n, m, 1 − e− 1
ln ) model is an upper bound of the average 

number of irredundants containing only vertices in O . If q = e− 1
lnn , for all y we have log1/q y = ln y × ln n. Using this 

simplification, we obtain the announced upper bound.

Proof of 3. Let Irr j,l be the number of irredundants of size j containing exactly l rare vertices. We have:

Irr j,l ≤ Irr j−l,0 × Irrl,l

where Irr j−l,0 is exactly the number of irredundants containing only vertices in O  ∪ U and Irrl,l is the number of irredun-
dants containing only vertices in R . Note that point 2 gives an upper bound on Irr j−l,0. We obtain a bound on Irrl,l by 
adapting the function f ( j) from Section 3.2. Since for all vertices r ∈ R , we have p < 1 − e− 1

ln n < 1
ln n , we have:

Irr j,l ≤
(|R|

l

)
m!

(m − l)!
(

1

ln n

)l

Irr j−l,0

Now we obtain an upper bound on the average number of irredundant in the HG(n, m, g) model.

Irr j ≤
min{ j,|R|}∑

l=0

(|R|
l

)( m

ln n

)l
Irr j−l,0

From point 2., we know that Irr j−l,0 is at most quasi-polynomial. Since l = O(|R|) = O((ln n)c), it is clear that 
(|R|

l

) ( m
ln n

)l
is 

also quasi-polynomial.

Proof of 4. Let Irr(H) denote the set of irredundants of a hypergraph H. For a fixed vertex e ∈ V , let Irr(H, e) the set of 
irredundants containing e. Let N(e) be the set of hyperedges not containing the vertex e. We have:

Irr(H, e) ⊆ {X ∪ {e} | X ∈ Irr(N(e))}.
Hence we have:

|Irr(H, e)| ≤ |Irr(N(e))|,
that is to say the number of irredundants containing a given vertex e is bounded by the number of irredundants of the 
hypergraph reduced to the hyperedges that do not contain e. The number of hyperedges that do not contain a ubiquitous 
vertex is bounded by x and using Poisson paradigm we know that in a random hypergraph a ubiquitous vertex is in at 
least m − x

√
x hyperedges with probability tending to 1. The number of irredundants of a hypergraph with at most x

√
x

hyperedges is polynomial since x is a constant.

8. Conclusion

The models we have studied already give a partial information on the average number of minimal transversals in real 
context and on the average complexity of the algorithms. Indeed, our models predict the order of growth of the size of 
minimal transversals. Hence, we are able to tell whether the computation can be made in reasonable time and space. 
Though, the upper bounds we have obtained on the number of minimal transversals still seems too large compared to 
real-data examples.



J. David et al. / Theoretical Computer Science 596 (2015) 124–141 141
References

[1] Dimitris Achlioptas, Cristopher Moore, On the 2-colorability of random hypergraphs, in: Proc. 6th RANDOM, Springer-Verlag, 2002, pp. 78–90.
[2] Peter Damaschke, Parameterized enumeration, transversals, and imperfect phylogeny reconstruction, Theoret. Comput. Sci. 351 (3) (2006) 337–350.
[3] Élie de Panafieu, Phase transition of random non-uniform hypergraphs, in: 24th International Workshop on Combinatorial Algorithms, IWOCA 2013, 

J. Discrete Algorithms 31 (2015) 26–39.
[4] Guozhu Dong, Jinyan Li, Mining border descriptions of emerging patterns from dataset pairs, Knowl. Inf. Syst. 8 (2005) 178–202.
[5] Andrzej Dudek, Alan Frieze, Loose Hamilton cycles in random k-uniform hypergraphs, Electron. J. Combin. (2010) 45.
[6] Thomas Eiter, Georg Gottlob, Identifying the minimal transversals of a hypergraph and related problems, SIAM J. Comput. 24 (6) (1995) 1278–1304.
[7] Thomas Eiter, Georg Gottlob, Hypergraph transversal computation and related problems in logic and AI, in: Sergio Flesca, Sergio Greco, Nicola Leone, 

Giovambattista Ianni (Eds.), JELIA, in: Lecture Notes in Computer Science, vol. 2424, Springer, 2002, pp. 549–564.
[8] Thomas Eiter, Georg Gottlob, Kazuhisa Makino, New results on monotone dualization and generating hypergraph transversals, SIAM J. Comput. 32 (2) 

(2003) 514–537.
[9] Thomas Eiter, Kazuhisa Makino, Georg Gottlob, Computational aspects of monotone dualization: a brief survey, Discrete Appl. Math. 156 (11) (2008) 

2035–2049.
[10] P. Erdös, A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959) 290–297.
[11] P. Erdös, A. Rényi, On the evolution of random graphs, in: Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 

pp. 17–61.
[12] Philippe Flajolet, Robert Sedgewick, Analytic Combinatorics, 1st edition, Cambridge University Press, New York, NY, USA, 2009.
[13] Michael L. Fredman, Leonid Khachiyan, On the complexity of dualization of monotone disjunctive normal forms, J. Algorithms 21 (3) (1996) 618–628.
[14] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Hannu Toivonen, Data mining, hypergraph transversals, and machine learning, in: PODS, ACM 

Press, 1997, pp. 209–216.
[15] Matthias Hagen, Algorithmic and computational complexity issues of MONET, Dissertation, Institut für Informatik, Friedrich-Schiller-Universität Jena, 

December 2008.
[16] Céline Hébert, Alain Bretto, Bruno Crémilleux, A data mining formalization to improve hypergraph minimal transversal computation, Fund. Inform. 80 

(December 2007) 415–433.
[17] Ilya Kapovich, Alexei Myasnikov, Paul Schupp, Vladimir Shpilrain, Generic-case complexity, decision problems in group theory and random walks, 

J. Algebra 264 (2003) 665–694.
[18] Dimitris J. Kavvadias, Elias C. Stavropoulos, An efficient algorithm for the transversal hypergraph generation, J. Graph Algorithms Appl. 9 (2) (2005) 

239–264.
[19] M. Lelarge, A new approach to the orientation of random hypergraphs, in: Proceedings of the Twenty-Third Annual ACM–SIAM Symposium on Discrete 

Algorithms, SODA ’12, SIAM, 2012, pp. 251–264.
[20] Keisuke Murakami, Takeaki Uno, Efficient algorithms for dualizing large-scale hypergraphs, Discrete Appl. Math. 70 (2014) 83–94.
[21] Alexei G. Myasnikov, Alexander N. Rybalov, Generic complexity of undecidable problems, J. Symbolic Logic 73 (2) (2008) 656–673.
[22] Vlady Ravelomanana, Alphonse Laza Rijamamy, Creation and growth of components in a random hypergraph process, in: Danny Z. Chen, D.T. Lee (Eds.), 

Computing and Combinatorics, in: Lecture Notes in Computer Science, vol. 4112, Springer, Berlin, Heidelberg, 2006, pp. 350–359.
[23] S. Sarkar, K.N. Sivarajan, Hypergraph models for cellular mobile communication systems, IEEE Trans. Veh. Technol. 47 (2) (1998) 460–471.
[24] Ilya Shmulevich, Aleksey D. Korshunov, Jaakko Astola, Almost all monotone boolean functions are polynomially learnable using membership queries, 

Inform. Process. Lett. 79 (5) (September 2001) 211–213.

http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4163686C696F707461735F6F6E746865s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib44616D617363686B653036s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib646550616E616669657532303135s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib646550616E616669657532303135s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib446F6E673035s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib447564656B3130s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib45697465723935s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib45697465723032s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib45697465723032s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4569746572474D3033s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4569746572474D3033s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib45697465724D473038s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib45697465724D473038s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4572646F733539s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4572646F733630s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4572646F733630s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib466C616A6F6C657432303039s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib467265646D616E4B3936s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib474B4D543937s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib474B4D543937s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib686167656E3038s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib686167656E3038s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4865626572743037s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4865626572743037s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib6B6D73733033s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib6B6D73733033s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4B61767661646961733035s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4B61767661646961733035s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4C656C6172676532303132s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib4C656C6172676532303132s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib756D3134s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib67656E756Es1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib566C61647932303036s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib566C61647932303036s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib53533938s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib536832303031s1
http://refhub.elsevier.com/S0304-3975(15)00562-9/bib536832303031s1

	An average study of hypergraphs and their minimal transversals
	1 Introduction
	2 Probabilistic models for hypergraphs
	2.1 The single-parameter model
	2.2 Multiparametric model

	3 Main results with the single parameter model
	3.1 On the average number of transversals
	3.2 Upper bound on the average number of irredundants
	3.3 Upper and lower bounds on the average number of minimal transversals

	4 Main results with the multiparametric model
	4.1 A lower bound on the average number of transversals
	4.2 Upper bounds on the average number of irredundants
	4.3 On the average number of minimal transversals

	5 Algorithm analysis
	5.1 Average complexity of the MT-Miner algorithm
	5.2 Generic-case complexity of the THG-problem

	6 Comparison with real data
	7 Proofs
	7.1 Proof of Proposition 1
	7.2 Proof of Proposition 2
	7.3 Proof of Proposition 3
	7.4 Proof of Theorem 1
	7.5 Proof of Proposition 4 and Corollary 1
	7.6 Proof of Proposition 6

	8 Conclusion
	References


