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1. Introduction.

Among arithmetic operations, on polynomials as on integers, the computation of gcd’s
plays a prominent role. It can even be considered as the fifth main one, with an impressive
range of applications, described for instance in von zur Gathen and Gerhard (2003). Let
us just quote as an example the fact that in many symbolic computation systems, a
large proportion of the time is devoted to the computation of gcd’s on numbers, or on
polynomials, in order to keep fractions under an irreducible form. Being able to measure
the efficiency of a gcd algorithm, and to perform its analysis, is thus crucial.

The plain algorithm. Even for two entries, there is a wide variety of gcd algorithms;
see, e.g., (von zur Gathen and Gerhard, 2003) or (Vallée, 2006). In this case, the Euclid
algorithm plays a central role. Observe that there are many possible variants, in particular
in the integer case with fast gcd algorithms; see (Brent, 1976; Schönhage, 1971; Stehlé
and Zimmermann, 2004). For the general case of ` entries (` ≥ 2), one of the most natural
and basic algorithms consists in performing a succession of ` − 1 phases, with each of
them being the Euclid algorithm on two entries, as described in the book (Knuth, 1998).

More precisely, inputs are here either nonnegative integers or univariate polynomials
over a finite field Fq. In order to compute the gcd of ` inputs x1,. . . , x` (` ≥ 2), we consider
a sequence of `−1 phases, that is, of `−1 gcd computations on two entries. Let y1 := x1,
then, for k ∈ [2..`], one successively computes yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).
The total gcd is y` := gcd(x1, x2, . . . , x`), and it is obtained after ` − 1 phases. We call
it the plain `-Euclid algorithm.

This is a straightforward algorithm, which cannot be easily extended for computing
Bézout coefficients. We are interested in performing its analysis, making more precise
and proving the observations made in Knuth (1998): “In most cases, the length of the
partial gcd decreases rapidly during the first few phases of the calculation, and this will
make the remainder of the computation quite fast”. There are indeed inputs for which
`− 1 phases are required, but, as the probability for two uniformly chosen inputs to be
coprime is asymptotically 6/π2 for integers and 2q/(q−1) for polynomials, this algorithm
is expected to require in average less steps. We thus do not claim that this naive algorithm
is efficient 1 . However, a first step in analysis of algorithms consists in understanding and
precisely analyzing even the simplest algorithms; such an analysis is not as trivial as it
may first appear and then provides a basis of comparison for other algorithms of the
same class.

State of the art. To the best of our knowledge, the plain `–Euclid algorithm has not
been yet analyzed. Its analysis was proposed as an exercise in the second edition of the
“Art of Computer Programming” (Knuth, 1998), and quoted as a difficult one (HM48).
However, the exercise disappears in the third edition..... The situation contrasts with
the case ` = 2, where the classical Euclid algorithm and all its main variants running
on integers or on polynomials are now precisely analyzed. See (Berthé and Nakada,
2000; Friesen and Hensley, 1996; Knopfmacher and Knopfmacher, 1988; Ma and von zur
Gathen, 1990) for analyses on polynomials; see (Heilbronn, 1969; Dixon, 1970) for the
first analyses on integers and (Hensley, 1994; Vallée, 2006; Baladi and Vallée, 2005; Lhote

1 Nevertheless, we will show that this algorithm is in fact not as “stupid” as it seems to be...
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and Vallée, 2008) for more recent ones, involving distributional analyses. Here, in all these
previous studies, the size of an input is defined as the maximum size of its components;
and the size is the degree of the polynomial, or the logarithm of the integer. The same
probabilistic behavior appears in both cases (polynomials and integers): with respect to
the input size, the mean number of iterations is linear, and the arithmetic complexity
is quadratic. Furthermore, the distribution of the number of iterations is asymptotically
Gaussian.

There exists also a probabilistic algorithm proposed in von zur Gathen and Shparlinski
(2006) for computing gcd’s. It replaces a gcd computation on ` entries by a unique gcd
on two random linear combinations of the initial input. The approach is different: we
perform here a probabilistic analysis of a deterministic algorithm where the distribution
of the inputs is chosen a priori, whereas the algorithm developed in von zur Gathen and
Shparlinski (2006) is probabilistic, designed as requiring few steps, and handles the worst-
case. In Section 10, we return to the comparison between the two strategies, and make
more precise the comparison done in (von zur Gathen and Shparlinski, 2006, Section 3).

Results. We provide two studies which perform in parallel the two complete analyses
(in the average-case and also in distribution) for the two types of inputs (polynomials
and integers).

For the analysis of the plain Euclid algorithm, it is natural to choose, as the total
size of the input, the sum of the size of its components, instead of the maximum of
the sizes of its components, as it was usually the case in previous studies. Observe first
that changing the total size of the input yields a different probabilistic behavior, even for
` = 2. Indeed, in the case ` = 2, and with respect to this new total size, the mean number
of iterations is proven to remain linear, but the distribution of number of iterations is
now asymptotically uniform (instead of being Gaussian).

In the case ` ≥ 3, our analysis exhibits a strong difference between the first phase
and the following phases. In the first phase, the number of iterations has a linear mean
and follows a beta law (the same as the law followed by the minimum of ` − 1 reals
i.i.d. in the unit interval) which reduces to the uniform law for ` = 2. In the following
phases, the number of iterations is constant on the average and follows a geometric law.
These results were expected, according to the previous remark of Knuth, but our analysis
exhibits a more precise phenomenon, since we indeed show that, in most cases, almost
all the calculation is done during the first phase.

Methods. On both types of inputs (polynomials or integers), our methods are typ-
ical in the Analytic Combinatorics domain, as it described in the book (Flajolet and
Sedgewick, 2009). We first perform a combinatorial step, and build generating functions
that describe the problem: we transfer, with formal tools, operations on structures (poly-
nomials, integers) into operations on generating functions. Then, in a second analytical
step, we view the generating functions as functions of the complex variable, and a good
knowledge of their singularities (position, and nature) provides asymptotic estimates of
their coefficients, and thus the probabilistic behavior of the algorithm.
The analysis in the polynomial case is a typical instance of classical analytic combina-
torics: we deal with power generating functions, built in Section 4, and the main analytic
tool is the Cauchy formula used in Section 5. As could be expected, the integer case
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is more difficult to handle, in each of the two steps, and combines analytic combina-
torics and dynamical systems: it can be viewed as an instance of the dynamical analysis
methodology described, for instance, in (Vallée, 2006); in the first step, the generating
functions are now built with dynamical tools, namely with the transfer operator of the
dynamical system which underlies the Euclid algorithm (i.e., the dynamical system de-
fined by the Gauss map), and these generating functions are now of Dirichlet type (see
Section 7), as usual in this context; in the analytical step, performed in Section 8, the
main tools are now the Perron formula, together with functional analysis.

Plan of the paper. We begin in Section 2 by describing our general framework: the
algorithm, its main parameters, some basic facts in analysis of algorithms, with a focus
on limit laws. Along the paper, we stress the strong analogy between the polynomial and
the integer cases, and we keep the same order of presentation in both cases. We start with
the polynomial case where the analysis is more standard. Sections 3, 4, 5 are devoted
to the polynomial case, and Sections 6, 7, 8 to the integer case. Sections 3 and 6 state
the main results, respectively in the polynomial and in the integer case. Sections 4 and 7
perform the combinatorial steps and build the adequate generating functions, Sections 5
and 8 perform the analytic steps. The proofs in the integer case rely on a general version
of a theorem due to Landau (1924), which seems to be not very well-known; this is why
we describe in Section 9 a version of this result which is well adapted to our context, and
provide its proof. We then conclude the paper with Section 10.

This paper is an extended version of a previous short paper (Berthé et al., 2013) which
appeared in the Proceedings of the ISSAC’2013 Conference. For the polynomial case, we
provide here two proofs which do not appear in the short version (namely the proofs of
Proposition 11 and Theorem 5), and we develop thoroughly the analysis in the integer
case: the average-case analysis was only briefly described in the short version, and the
distributional analysis provided here is completely new.

2. General framework.

2.1. The `-Euclid algorithm.

There are two main rings endowed with a Euclidean division: the ring Fq[X] of poly-
nomials over the finite field Fq with q elements, and the ring Z of integers. In each case,
there is a Euclidean algorithm which performs a gcd computation between two entries,
with a sequence of Euclidean divisions, as recalled in Figure 1. The quantity gcd(a1, a2)
is the last nonzero remainder ar+1. It can be chosen monic (in the polynomial case) or
positive (in the integer case). The number of steps (here equal to r) is one of the main
parameters of interest.

On an `-uple (x1, x2, . . . , x`) of nonzero entries (polynomials or integers), the plain
`-Euclid algorithm computes their greatest common divisor y via a sequence of `− 1 gcd
computations between two entries, which yields

y1 := x1, yk = gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) for k ∈ [2..`].

The total gcd y` := gcd(x1, x2, . . . , x`) is thus obtained after `− 1 phases.
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Euclid(a1, a2).

If deg a1 ≥ deg a2 then

a1 =m1 a2 +a3 0 < deg a3 < deg a2

a2 =m2 a3 +a4 0 < deg a4 < deg a3

. . . = . . . + . . .

ar−1 =mr−1 ar +ar+1 0 < deg ar+1 < deg ar

ar =mr ar+1 +0

Output ar+1

else Euclid(a1, a2) := Euclid(a2, a1)

Euclid(a1, a2).

If a1 ≥ a2 then

a1 =m1 a2 +a3 0 <a3 < a2

a2 =m2 a3 +a4 0 <a4 < a3

. . . = . . . + . . .

ar−1 =mr−1 ar +ar+1 0 <ar+1 < ar

ar =mr ar+1 +0

Output ar+1

else Euclid(a1, a2) := Euclid(a2, a1)

Fig. 1. Description of the Euclid algorithm on two inputs, for polynomials on the left, and for
integers on the right.

This paper aims at precisely understanding the random behavior of the plain algo-
rithm. Since the algorithm is a succession of phases, it is important to describe each
phase of index k (k ∈ [1..`− 1]), with the following parameters:

(a) the number Lk of iterations, i.e., of divisions, performed during the k-th phase,
(b) the size 2 Dk of the gcd yk at the beginning of the k-th phase.

Remark 1. The variable Lk always takes positive values whereas the variable Dk may
take the value zero. When unifying the treatments of both variables, we sometimes will
have to study the variable Lk − 1 in order to compare it more efficiently with Dk.

We are also interested in the analysis of the following global parameters:
(c) the total number of iterations L := L1 + L2 + . . .+ Lk,
(d) the algorithm may be interrupted as soon as yk = 1 and Π is the number of useful

phases, namely

Π = 0 if y1 = 1 and Π := max{k | yk 6= 1} if y1 6= 1;

(e) the total number L̃ of divisions of the interrupted algorithm is defined as

L̃ = 0 if Π = 0 and L̃ := L1 + L2 + . . .+ LΠ if Π > 0.

2.2. Probabilistic analysis.

For each type (polynomials or integers), an input for the `–Euclid algorithm is an
`-uple x := (x1, x2, . . . , x`) of entries, and the set of all possible inputs is denoted in a
generic way by Ω. Furthermore, there is a size d which defines a mapping d : Ω → N,
and, for an input x ∈ Ω, the integer d(x) is closely related to the space that is occupied
by x. The set Ωn gathers the inputs of size n. This is a finite subspace of Ω which is
endowed with the uniform probability denoted by Pn. Now, each parameter X of interest,
here X ∈ {Lk, Dk,Π, L}, is studied via its restriction Xn to each Ωn that gives rise to a
random integer variable (defined on Ωn).
Such a random variable Xn can be studied in a (usual) probabilistic way, via its expecta-
tion, its variance, or its distribution. For a random variable X defined on Ω, we often omit
the reference to the space Ωn when it is clear, and instead of writing En[Xn] for the mean

2 The size will be defined later in Section 3 for polynomials and in Section 6 for integers.
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of Xn on the finite set Ωn, we simply write En[X]. In the same vein, instead of writing
Pn[Xn > m] for the probability of the event [Xn > m], we simply write Pn[X > m].

Figure 2 below provides a table for the notation introduced so far.

d(x) size of the input x

x a generic input for the `-Euclid Algorithm

Ω set of the inputs for the `-Euclid Algorithm

Ωn subset of the inputs of size n for the `-Euclid Algorithm

k index of a phase

Lk number of iterations during the k-th phase

Dk size of the gcd at the beginning of the k-th phase

Π number of useful phases

L total number of divisions of the interrupted algorithm

Fig. 2. Table of notation for the main parameters.

Analysis of algorithms focuses on the asymptotic probabilistic behavior of the sequence
Xn, when the size n becomes large. Average-case analysis is devoted to the study of the
expectations: it deals with the sequence En[X] for n→∞, and provides first interesting
results on the sequence Xn. However, the study of the distribution of Xn gives a more
precise knowledge, as will be seen in the next section.

2.3. Distributional analysis and limit laws.

Consider a sequence (Xn) of random variables, each of them with integer nonnegative
values. We are interested in events of type [Xn ≤ m] and wish to evaluate their probability

$n(m) := Pn[Xn ≤ m],

which exactly defines the distribution of the variable Xn. As we focus on the asymptotics,
we study the sequence $n of distribution functions for n→∞. When it exists, the limit
$ of the sequence $n defines the asymptotic distribution of the variable X. We also say
that the law defined by $ is the asymptotic law for X.

There are two main possible cases for the limit $: in the first case, the limit law $ is
discrete, and arises directly from the definition of Xn, whereas, in the second case, there
is a continuous limit which arises after a convenient normalization. We will meet the two
cases in the present study, according to the index k of the phase. For the first phase
(k = 1), we will meet a continuous limit law (namely the beta law), whereas, for the
subsequent phases (k ≥ 2), there will be discrete limit laws (closely related to geometric
laws); see Theorem 3 and Theorem 14 for precise statements. In their book (Flajolet and
Sedgewick, 2009), Flajolet and Sedgewick describe various combinatorial schemes that
lead to discrete or continuous limit laws.

Discrete limit. When the limit $ exists and is discrete, it is defined on integer values.
The functions $n and their limit $ are nondecreasing functions. This implies that the
convergence of the sequence ($n) to the limit $ is uniform, and the sequence (εn) defined
as

εn := sup
m∈N
|$n(m)−$(m)|
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tends to zero and provides the speed of convergence.

Continuous limit. In this case, the sequence ($n) will be convergent after a suitable
normalization: we write the integer m as a function of the expectation Mn and the
standard deviation σn as

m = Mn + xσn, and we thus set x := x(m,n) =
m−Mn

σn
.

We now study the normalized random variable X̌n associated with Xn by the equality
of the events [Xn = m] = [X̌n = x(m,n)]. And we are interested in the distribution $̌n

of X̌n, and its (possible) limit $̌ when n→∞. If this limit exists, this means

$̌(x) := lim
n→∞

$̌n(x) = lim
n→∞

$n

(
m−Mn

σn

)
,

and we will say that the law $̌ is the limit law of the sequence (Xn). In the same vein
as before, the functions $̌n and their limit $̌ are nondecreasing functions. Then, the
convergence of the sequence ($̌n) to the limit $̌ is always uniform, and the sequence
(εn) defined as

εn := sup
x∈R
|$̌n(x)− $̌(x)|

tends to zero and provides the speed of convergence.

2.4. Examples of limit laws.

Figure 3 illustrates the limit laws that arise in the context of this paper. Each graph
corresponds to experiments that were done on integer inputs 3 and represents the empir-
ical probability density of the number of steps performed by the plain algorithm during
a given phase.

The top of Figure 3 is devoted to the case of two entries (` = 2), and we consider two
different input sizes. On the left, the size of a pair (u, v) is the maximum of the (binary)
sizes of u and v (the sup-size): this is the usual size in all the previous analyses performed
for Euclidean algorithms on two inputs. On the right, the size of the pair (u, v) is the sum
of the (binary) sizes of u and v (the sum-size). The limit distribution is clearly different
in both probabilistic models. With the usual sup-size, the limit law is Gaussian, as it
was proved in Hensley (1994). Gaussian limit laws are classical in analysis of algorithms,
and, in particular, in the analysis of Euclidean algorithms. However, with the sum-size,
the limit law is the uniform law. We recall the expressions of the density f for each of
the two laws,

f(x) =
1√
2π
e−x

2/2 [Gaussian law], f(x) = 1[0,1](x) [Uniform law on [0, 1]].

The bottom of Figure 3 describes the case of four entries (` = 4). The graphs represent
the empirical probability density of the number of steps during a given phase, on the left
for the first phase (k = 1), and on on the right, during the second phase (k = 2). The
limit law for the first phase is clearly a continuous law, but it is no longer the uniform
law. We will prove that it is a beta law with convenient parameters (see Section 2.5 for

3 These data are obtained with 105 executions of the plain algorithm on integer inputs with a total

binary size equal to 1000.
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x-axis: possible values of the cost L(ω) y-axis: probability density x 7→ f(x)
f(x)dx := Pr[ω; L(ω) ∈ [x, x + dx]]
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Fig. 3. Examples of limit laws with their densities.

more on beta laws). On the right, the limit law is discrete and we will prove that it is
a geometric law, i.e., a “true” geometric law for polynomials, and a quasi-geometric law
for integers. We recall that a random variable X follows a geometric law of parameter y
if the distribution of X satisfies

P[X = m] = y(1− y)m−1 for m ≥ 1.

2.5. The beta law inside analysis of algorithms.

We now focus on the beta law which plays an important role in the present study. The
beta law of parameters (a, b) has a density on the unit interval given by

βa,b(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−11[0,1](x).

The a-th order statistics of a sequence of p variables i.i.d in the unit interval [0, 1] follows
a beta law of parameters (a, p − a + 1). In the case when a = 1 and p = ` − 1, this is
the minimum Y of `− 1 variables i.i.d on the unit interval which follows the beta law of
parameters (1, `− 1) with a density and a distribution respectively equal to

f(x) = (`− 1)(1− x)`−21[0,1](x), Pr[Y ≥ x] = (1− x)`−1.

Except this “direct” occurrence of the beta law, there are very few “indirect” instances
of the beta law, and we are only aware of the occurrence of the beta law in the Gram-

8



Schmidt orthogonalization process (see e.g. Akhavi et al. (2009)). Moreover, the book
Flajolet and Sedgewick (2009) that contains numerous examples of various types of limit
laws does not provide any probabilistic analysis which leads to a beta law (and it contains
only very few instances which lead to uniform laws).

2.6. Generating functions.

In the polynomial case, principles of analytic combinatorics directly apply, with power
generating functions. In the study of a cost X (here X ∈ {Lk, Dk}), the main tool is the
bivariate generating function X(z, u): this is a power series, where the variable z marks
the size whereas the variable u marks the cost. Two (univariate) generating functions are
derived from X(z, u); as their coefficients are expressed as sums of coefficients of X(z, u),

they are called cumulative generating functions. The first one, X̂(z), is used for the

expectation En[Xn], while the second one, X̂ [m](z), is well-adapted for the probabilities
of events Pn[Xn ≥ m] (see Figure 4 for their description). They are defined and used
in Section 4. In the integer case, and, as it is usual in number theory, Dirichlet series
replace power series, but the principles are the same. In the study of a cost X, we use as
generating functions the bivariate Dirichlet series X(s, u) and two cumulative Dirichlet

series X̂(s) and X̂ [m](s). Figure 4 describes these Dirichlet series that are defined and
used in Section 7.

In both cases, we are interested in the asymptotic behavior of the coefficients of the
generating functions, which is closely related to the nature and the position of their dom-
inant singularities. There exist classical theorems that transfer the analytical properties
of the generating functions to the asymptotics of their coefficients, and this transfer is
often more involved for Dirichlet series than for power series. In this paper, we give two
precise transfer results (Propositions 11 and 22). The strong parallelism between these
two transfers explains the similarity of our results.

S(z) S(s) plain generating function for Ω

X(z, u) X(s, u) bivariate generating function for parameter X ∈ {Lk, Dk}
X̂(z) X̂(s) cumulative generating function for parameter X ∈ {Lk, Dk}
X̂ [m](z) X̂ [m](s) generating function of the event [X ≥ m] for X ∈ {Lk, Dk}

Fig. 4. The main generating functions used in the paper for the two types of inputs, namely
polynomials and integers.

3. Main results for polynomials.

3.1. Set of inputs and size.

We consider the ring Fq[X] of polynomials over the finite field Fq with q elements, and
the size of a nonzero polynomial x is its degree denoted by d(x).

The possible inputs are all the sequences x formed of ` nonzero polynomials, and,
without loss of generality, we limit ourselves to monic polynomials. Then, the set of
inputs is

Ω = U` where U is the set of monic polynomials.

9



The size of the input x = (x1, x2, . . . , x`) is defined as the total degree of the sequence,
and we let

d(x) := d(x1 x2 . . . , x`) = d(x1) + d(x2) + . . .+ d(x`).

We recall that the subset Ωn is formed with the inputs of size n. It is a finite set, endowed
with the uniform probability Pn.

We will consider cost functions on the sets Ωn (corresponding to the parameters Dk,
Lk, Π, L), and we will study the probabilistic behavior of these costs (mean, variance,
distribution) in an asymptotic way, when n tends to infinity.

With the analytic combinatorics methodology, we prove (in Sections 4 and 5) the
results described in Section 3.2, 3.3 and 3.4 below. The first one (Theorem 2) deals with
the expected values, whereas the second one (Theorem 3) describes asymptotic limit
laws, and lastly, the results of Section 3.4 are devoted to the global parameters.

3.2. Average-case analysis.

Theorem 2 below exhibits a strong difference between the first phase and the subse-
quent ones. We will find again this difference when considering limit laws in Section 3.3.
Theorem 2 shows that, on average, the first phase performs a linear number of iterations
which involves the entropy 2q/(q−1) of the Gauss map (see Sections 6.2 and 10 for more
details). Moreover, whereas the mean degree of the first gcd is linear with respect to the
input size, the mean degree of the gcd is proven to be of constant order after the first
phase. Then, the mean number of divisions Lk which will be performed in the following
phases, together with the mean degrees Dk of the following gcd’s, will be of constant
order.

Theorem 2. [Expectations.] Let the set Ωn of sequences of ` monic polynomials with
size n (i.e., total degree n) be endowed with the uniform distribution. The following holds.

(a) The expectation of the number of iterations L1 during the first phase is linear with
respect to the size n and satisfies

En[L1] =
q − 1

2q

n

`
+

3q + 1

4q
+O

(
1

n

)
.

(b) For any k ∈ [2..` − 1], the expectation of the number of iterations Lk during the
k-th phase is asymptotic to a constant, and satisfies

En[Lk] =
qk − 1

qk − q
+O

(
1

n

)
= 1 +

q − 1

q

1

qk−1 − 1
+O

(
1

n

)
.

(c) The expectation of the degree of the first polynomial x1 is linear with respect to the
size n and satisfies

En[D1] =
n

`
.

(d) For any k ∈ [2..`− 1], the expectation of the degree Dk of yk = gcd(x1, x2, . . . , xk)
at the beginning of the k-th phase is asymptotic to a constant, and satisfies

En[Dk] =
1

qk−1 − 1
+O

(
1

n

)
.
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3.3. Limit laws.

The following result refines Theorem 2, and explains more deeply the difference be-

tween the first phase (k = 1) and the following phases. For k = 1, the expected degrees of

the first two polynomials x1 and x2 are linear, and the number of divisions L1 is closely

related to min(d(x1),d(x2)). Then, it is natural to expect beta laws for the first phase,

more precisely a beta law of parameter (1, ` − 1), since it is the law of the minimum

of ` − 1 random variables i.i.d. on the unit interval (see Section 2.5). For ` = 2, this is

the uniform law. For the subsequent phases, as the expected degrees of the gcd’s are of

constant order, according to Theorem 2, we may expect geometric laws.

Theorem 3. [Limit laws.] Let the set Ωn be endowed with the uniform distribution. The

following holds.

(a) The number of iterations L1 during the first phase asymptotically follows a beta

law of parameter (1, `− 1) on the interval [0, (q − 1)/(2q)], whereas the number of

iterations Lk during each following phase asymptotically follows a geometric law

with ratio pk = (q − 1)/(qk − 1).

(i) One has Pn [Lk > n/(k + 1)] = 0, for any k.

(ii) For k = 1, the probability Pn[L1 > m] of the event [L1 > m] satisfies when

n→∞ and m/n ∈ [0, (q − 1)/(2q)]

Pn[L1 > m] =

(
1− 2q

q − 1

m

n

)̀−1

+O

(
1

nα

)
, with α = min

(
1,

(`− 1)2

2`− 1

)
,

where the constant in the O–term is uniform on the interval [0, (1/2)(q−1)/q].

(iii) For k ≥ 2, the probability Pn[Lk > m] of the event [Lk > m] satisfies when

n→∞ and m/n ∈ [0, 1/(k + 1) · (qk − 1)/qk]

Pn[Lk > m] =

(
q − 1

qk − 1

)m
+O

(
log n

n

)
,

where the constant in the O–term is uniform on the interval [0, 1/(k+1) ·(qk−
1)/qk].

(b) The degree D1 of the first polynomial x1 asymptotically follows a beta law of pa-

rameter (1, `− 1) on the interval [0, 1], whereas the degree Dk of the gcd yk at the

beginning of each following phase asymptotically follows a geometric law with ratio

rk = q1−k.

(i) One has Pn [Dk > n/k] = 0 for any k.

(ii) For k = 1, the probability Pn[D1 ≥ m] of the event [D1 ≥ m] satisfies when

n→∞ and m/n ∈ [0, 1]

Pn[Dk ≥ m] =
(

1− m

n

)`−1

+O

(
1

nα

)
with α = min

(
1,

(`− 1)2

2`− 1

)
,

where the constant in the O–term is uniform on the interval [0, 1].
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(iii) For any k ≥ 2, the probability Pn[Dk ≥ m] of the event [Dk ≥ m] satisfies

when n→∞ and m/n ∈ [0, 1/k],

Pn[Dk ≥ m] = q(1−k)m +O

(
log n

n

)
,

where the constant in the O–term is uniform on the interval [0, 1/k].

Remark 4. The exponent α of Assertions (a)(ii) and (b)(ii) satisfies the following:

α = 1/3 for ` = 2, α = 4/5 for ` = 3, and α = 1 for ` ≥ 4.

3.4. Global parameters.

The interrupted algorithm stops as soon as the gcd yk is of degree 0. Let Π(x1, . . . , x`)

be the number of useful phases. The event [Π ≥ k] coincides with the event [Dk ≥ 1] for

k ∈ [1..`− 1], which is estimated in Theorem 3. Then, it is possible to consider the total

number L̃ of divisions performed by the interrupted version: we provide an estimate of

its mean value, and prove that it itself asymptotically follows a beta law, the same as

the number L1 of the first phase.

Theorem 5. [Global parameters.] When the set Ωn is endowed with the uniform distri-

bution, the following holds.

(a) The distribution of the number Π of useful phases satisfies Pn[Π ≥ 0] = 1, Pn[Π ≥
`] = 0, and

Pn[Π ≥ k] = q1−k +O

(
1

n

)
for k ∈ [1..`− 1].

(b) The total number of divisions L̃ performed by the interrupted version of the `-Euclid

algorithm has an expected value En[L̃] equal to

q − 1

2q

n

`
+

3q + 1

4q
+

`−1∑
k=2

(
q

qk
+

q − 1

qk − 1

)
+O

(
`

n

)
.

(c) The total number L of iterations, and the total number L̃ of iterations of the inter-

rupted algorithm both asymptotically follow a beta distribution of parameter (1, `−1)

on the interval [0, (q − 1)/(2q)] with a speed of convergence O(log n/n).

4. Generating functions in the polynomial case.

4.1. General setting.

We use the analytic combinatorics methodology, such as described in (Flajolet and

Sedgewick, 2009), and deal with its main tool, namely generating functions. We use

a variable zi to mark the degree d(xi) of the i–th polynomial xi, and the generating

function F (z1, z2, . . . , z`) of the set Ω = U`, relative to the total size d, is defined as

F (z1, z2, . . . , z`) :=
∑
x∈U`

z
d(x1)
1 z

d(x2)
2 . . . z

d(x`)
` .

12



It is equal to the product U(z1)U(z2) . . . U(z`), where U(z) is the generating function of

the set U of the monic polynomials relative to the size d, namely

U(z) =
∑
x∈U

zd(x) =
∑
n≥0

qnzn =
1

1− qz
.

Most of the time, we limit ourselves to the case when all the variables zi are equal, and

we write F (z) instead of F (z, · · · , z). One has

F (z) =
∑
x∈U`

zd(x) = U(z)` =
1

(1− qz)`
.

For studying a parameter (or a cost C) on Ω = U` (here, the costs Lk and Dk), a main

tool is the bivariate generating function relative to the cost C, obtained by introducing

a further variable u to mark the cost C, and defined as

C(z, u) :=
∑
x∈U`

zd(x)uC(x).

The probability distribution of the cost C can be studied with the generating function

C(z, u), via the relation

Pn[C = i] =
[zn ui]C(z, u)

[zn]F (z)
.

We are first interested in the mean value of parameter C, and we deal with the

(univariate) cumulative generating function

Ĉ(z) :=
∂C

∂u
(z, u)

∣∣∣
u=1

, which yields En[C] =
[zn]Ĉ(z)

[zn]F (z)
. (1)

When we are interested in the probability of the event [C ≥ m], we deal with the (uni-

variate) generating function of the event [C ≥ m], which is another cumulative generating

function, defined as

Ĉ [m](z) :=
∑
i≥m

[ui]C(z, u), which yields Pn[C ≥ m] =
[zn]Ĉ [m](z)

[zn]F (z)
. (2)

By definition, the cumulative function Ĉ(z) is the sum of all the cumulative functions

Ĉ [m](z) of the event [C ≥ m].

Note that Example IX.15 in (Flajolet and Sedgewick, 2009) describes the analysis of

Euclid Algorithm over polynomials with generating functions. The context is simpler and

may help the reader to understand the role of each generating series.

4.2. Algorithmic expression for the generating functions.

In order to perform an analysis of the plain `-Euclid algorithm, we first derive an

alternative expression for the generating function F (z), which describes the algorithm

as a sequence of phases. This new expression will be a product of ` − 1 factors, each of

them describing a phase of the algorithm.

13



Proposition 6. [Phase-function.] The generating function F (z) of the set Ω = U` with
the size equal to the total degree decomposes as

F (z) = U(z)` = U(z`) ·
`−1∏
k=1

T (z, zk) (3)

and involves the phase-function T defined as

T (z, t) =
U(z) + U(t)− 1

1−G(zt)
, (4)

the generating function U(z) of monic polynomials, and the generating function G(z) of
general polynomials with positive degree, i.e.,

U(z) =
1

1− qz
, G(z) =

(q − 1)qz

1− qz
= (q − 1)

(
1

1− qz
− 1

)
. (5)

Proof. We first focus on the first phase; it only involves x1 and x2 and consists in applying
Euclid algorithm on the pair (x1, x2). The Euclid algorithm first compares the degrees
of x1 and x2. There are three cases:

d(x1) = d(x2), d(x1) > d(x2), d(x1) < d(x2).
In the first case, the first step is a subtraction, which can be viewed as a division with a
quotient equal to 1.

In all the cases, the gcd y2 := gcd(x1, x2) together with the sequence of quotients
(m1,m2, . . . ,mr) completely determines the input pair (x1, x2). More precisely, one writes
(x1, x2) = (y2 x̂1, y2 x̂2) with a coprime pair (x̂1, x̂2) and the execution of the Euclid
algorithm on the pair (x̂1, x̂2) produces the same sequence (m1,m2, . . . ,mr) as the pair
(x1, x2). The first quotient m1 is monic (this is due to the fact that x1 and x2 are monic)
and the remainder of the sequence Σ = (m2, . . . ,mr) is formed with general polynomials
mi (no longer monic) with d(mi) ≥ 1. As previously, the total degree of the sequence Σ
is d(Σ) = d(m2) + . . .+ d(mr).

We now focus on the first quotient m1, and we consider the three possible cases.

(i) If d(x1) = d(x2), then m1 = 1.

(ii) If d(x1) > d(x2), then d(m1) ≥ 1, d(x̂2) = d(Σ), d(x̂1) = d(m1) + d(Σ).

(iii) If d(x1) < d(x2), then d(m1) ≥ 1, d(x̂1) = d(Σ), d(x̂2) = d(m1) + d(Σ).

All these remarks provide an alternative expression of the product U(z1)U(z2). Indeed,
the relation

z
d(x1)
1 z

d(x2)
2 = (z1z2)d(y2) · zd(x̂1)

1 z
d(x̂2)
2

yields the factorisation

U(z1)U(z2) = U(z1z2) ·
∑
x̂1,x̂2

z
d(x̂1)
1 z

d(x̂2)
2 ,

together with the equality∑
x̂1,x̂2

z
d(x̂1)
1 z

d(x̂2)
2 =

[
1 +

∑
m1

z
d(m1)
1 + z

d(m1)
2

][∑
Σ

(z1z2)d(Σ)

]
, (6)
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with the conditions previously described on the first quotient m1, the sequence Σ and the
gcd y2. The first factor in (6) involves the generating function U(z) of monic polynomials,

1 +
∑
m1

z
d(m1)
1 + z

d(m1)
2 = 1 + (U(z1)− 1) + (U(z2)− 1) = U(z1) + U(z2)− 1.

The second factor is the generating function (with respect to the variable z1z2) of the
sequences of general polynomials with a positive degree, that is,∑

Σ

(z1z2)d(Σ) =
1

1−G(z1z2)
.

We have thus obtained the following alternative form for the product

U(z1)U(z2) = U(z1z2) · T (z1, z2), with T (z, t) =
U(z) + U(t)− 1

1−G(zt)
.

When we replace this expression into the total product
U(z1)U(z2) . . . U(z`) = F (z1, z2, . . . , z`)

and iterate the transformation, we obtain an alternative expression for the generating
function F (z1, z2, . . . , z`) with a product of ` − 1 factors, each of them involving the
phase-function T at points zk and tk = z1 . . . zk, i.e.,

F (z1, z2, . . . , z`) = U(t`) ·
`−1∏
k=1

T (tk, zk+1).

It can be useful in some studies to keep all the variables zi, but here, we let z1 = z2 =
. . . = z` = z, and we obtain an expression of the generating function F (z). 2

4.3. Generating functions for parameters.

We will now deal with bivariate generating functions. The two parameters of interest
Lk (number of steps in the k-th phase) and Dk (degree of the gcd yk at the beginning of
the k-th phase) are only related to the k-th phase. Then we isolate, in the total generating
function F (z), the generating function which describes the k-th phase, and replace it by
its associated bivariate generating function: this means that we mark this part of the
generating function with the variable u. Then, instead of

F (z) = U(z`) ·
`−1∏
k=1

T (z, zk),

we consider the two generating functions

Lk(z, u) = U(z)` · T (z, zk, u)

T (z, zk)
, Dk(z, u) = U(z)` · U(zk, u)

U(zk)
. (7)

We now explain how to define the two generating functions T (z, t, u) and D(t, u).
When studying the parameter Lk (number of steps in the k-th phase), the extra

variable u marks each step of the k-th iteration, and we deal with the generating function

T (z, t, u) = u · U(z) + U(t)− 1

1− u ·G(zt)
with t = zk. (8)
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When studying the parameter Dk (degree of the gcd yk at the beginning of the k-

th phase), the extra variable u marks the degree of the gcd yk, and we deal with the

generating function

U(t, u) =
1

1− qut
with t = zk. (9)

Finally, the following result provides explicit expressions for the cumulative generating

functions and the cumulative bivariate generating functions.

Proposition 7. [Generating functions.] The following holds, for any k ∈ [1..`− 1].

(i) The bivariate generating function Lk(z, u), as well as the cumulative generating

functions L̂k(z) and L̂
[m]
k (z) relative to the number of divisions during the k-th

phase satisfy

Lk(z, u)

U(z)`
= u

1−G(zk+1)

1− uG(zk+1)
,

L̂k(z)

U(z)`
=

1

1−G(zk+1)
,

L̂
[m]
k (z)

U(z)`
= G(zk+1)m−1,

and involve the generating functions G,U defined in (5).

(ii) The bivariate generating function Dk(z, u), as well as the cumulative generating

functions D̂k(z) and D̂
[m]
k (z) relative to the degree Dk of the gcd at the beginning

of the k-th phase satisfy

Dk(z, u)

U(z)`
=

1− qzk

1− uqzk
,

D̂k(z)

U(z)`
=

qzk

1− qzk
,

D̂
[m]
k (z)

U(z)`
= (qzk)m.

Proof. Equalities (7) and (8) (in the L-case) and equalities (7) and (9) (in the D-case)

lead to exact expressions of the bivariate generating functions Lk(z, u) and Dk(z, u).

Taking the derivative with respect to u (at u = 1), we obtain the cumulative generating

functions

L̂k(z)

U(z)`
=

1

1−G(zk+1)
=

1− qzk+1

1− q2zk+1
,

D̂k(z)

U(z)`
=

qzk

1− qzk
. (10)

Extracting the coefficient of [ui] in the bivariate generating functions and taking the sum

over i ≥ m gives

L̂
[m]
k (z)

U(z)`
= G(zk+1)m−1,

D̂
[m]
k (z)

U(z)`
= (qzk)m. (11)

2

Remark 8. According to Remark 1, we are interested in the cost Lk − 1 in order to

compare it in a more efficient way to Dk. With Proposition 7 (i), the two bivariate

generating functions related, respectively, to the number of iterations Lk − 1 and to the

degree Dk of the gcd yk share the same common form

U(z)`
1−Ak(z)

1− uAk(z)
,

with Ak(z) = G(zk+1) [(Lk − 1)-case], or Ak(z) = qzk [Dk-case]. (12)
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5. Analytic study in the polynomial case.

We have obtained in Proposition 7 the expressions of the cumulative generating func-
tions

D̂k, D̂
[m]
k , L̂k, L̂

[m]
k .

As they are fractional functions, it is thus possible to directly compute their coefficients,
and use (1) and (2) to obtain an exact expression of the expectation and the probability
distribution of the parameters Dk and Lk. However, this is not the general viewpoint
developed here, as we are mainly interested in the asymptotic probabilistic behavior (as
n → ∞) of these random variables. Singularity analysis relates the analytic properties
of a generating function and the asymptotic behavior of its coefficients. More precisely,
it views the generating function as a function of the complex variable, determines the
position and the nature of its dominant singularity (the singularity closest to 0), and
transfers this knowledge to the asymptotic behavior of its coefficients. Such an approach
is completely described in the book Flajolet and Sedgewick (2009) where general hy-
potheses are given on the bivariate generating functions to obtain Gaussian limit laws
(see Theorem IX.9 for instance). However, the general framework is here different, as will
be discussed later, in particular in the conclusion.

5.1. A general framework for expectations.

Here, the main series used in the proof of Theorem 2 (which is the object of the

present section) are the cumulative generating functions D̂k and L̂k whose expression is
provided by (10). These expressions exhibit a dominant pole at z = 1/q, with an order
which is varying according to the phase. For the first phase (k = 1), this pole is of order
` + 1, whereas this pole remains of order ` for the other phases (k ≥ 2). This explains
the differences between the first phase and subsequent phases.

We first design a general scheme for the analysis of expectations.

Proposition 9. [Expectations.] Consider a combinatorial structure, with a cost C, whose
bivariate generating function C(z, u) is of the form

C(z, u) =
1

(1− z)`
· 1−A(z)

1− uA(z)
, (` ≥ 2) . (13)

(i) Then, the expectation of the cost C satisfies

En[C] =
[zn]Ĉ(z)

[zn](1− z)−`
with Ĉ(z) =

∂C

∂u
(z, u)

∣∣∣
u=1

=
1

(1− z)`
· A(z)

1−A(z)
.

(ii) Assume now the following:
(a) A(z) is analytic in a disk |z| ≤ ρ, with ρ > 1;
(b) a := A(1) 6= 0, b := A′(1) > 0;
(c) The derivative A′(z) never takes zero values on the circle |z| = 1.

Then, the following estimates hold for the expectations En[C], with e := A′′(1):

in the case a = 1, En[C] =
1

b

n

`
+

(
1

b
− 1 +

e

2b2

)
+O

(
1

n

)
,

in the case a < 1, En[C] =
a

1− a
+O

(
1

n

)
.
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5.2. Average-case analysis.

Before proving Proposition 9, we explain how it leads to Theorem 2.

Proof of Theorem 2. We begin with the formula of the expectation in (1), the expressions
of F (z) and of the cumulative generating functions Dk(z) and Lk(z)−1 given in (12). All
these generating series have a dominant pole which is located at 1/q. We then perform
the change of variable z 7→ z/q. Note that these generating functions are of the form
described in (13), up to this change of variable z 7→ z/q. Moreover, in the L-case, we
deal with the generating functions relative to the parameter Lk − 1, and we will add 1
to the asymptotic estimates to recover the expectations of parameter Lk. Proposition 9
now applies with Ak(z) := Ak(z/q), where Ak is defined in (12), namely,

Ak(z) = G
(
(z/q)k+1

)
(case Lk − 1), Ak(z) = q (z/q)k (case Dk). (14)

There are two main cases according to the phase index k, as the value ak := Ak(1) equals
1 for k = 1, whereas the value ak is strictly less than 1 for k ≥ 2.
In the case k ≥ 2, Proposition 9 applies (case a < 1), and this gives rise to the constants

ak
1− ak

=
q − 1

qk − 1
(case Lk − 1),

ak
1− ak

=
1

qk−1 − 1
(case Dk).

Consider now the case k = 1. In the D1-case, one has A1(z) = z and one gets an exact
expression for En[D1] as En[D1] = n/`. In the (L1 − 1)-case, one has

A1(z) = (q − 1)

(
q

q − z2
− 1

)
, b1 = A′1(1) =

2q

q − 1
, e1 = A′′1(1) =

2q(q + 3)

(q − 1)2
.

We now add the constant 1 to the constant term, and this ends the proof of Theo-
rem 2. 2

5.3. Proof of Proposition 9.

The proof of Proposition 9 is mainly based on the following lemma which provides
asymptotic expressions for the numerator and the denominator of En[C].

Lemma 10. [Coefficients extraction.] Consider a function

C(z) = B(z) · (1− z)−j (j ≥ 2)

where B(z) is analytic in the disk |z| ≤ ρ with ρ > 1. Let a := B(1) 6= 0 and b := B′(1).
Then, the following estimates hold for the coefficients [zn]C(z):

[zn]C(z) = a

(
n+ j − 1

j − 1

)
− b
(
n+ j − 2

j − 2

)
+O(nj−3)

=

(
a

n

j − 1
+ a− b

)(
n+ j − 2

j − 2

)
+O(nj−3)

= a

(
n+ j − 1

j − 1

)
+O(nj−2).

When B(z) admits simple poles on the punctured circle {|z| = 1 | z 6= 1}, the third
estimate remains valid, and the second estimate remains also valid as soon as j ≥ 3.

18



Proof of Lemma 10. The coefficient [zn]C(z) is the residue at z = 0 of the function
C(z)/zn+1. This function has two poles inside the disk |z| ≤ ρ, the pole z = 0 and the
pole z = 1. Then, the residue theorem entails the equality

[zn]C(z) = −Res

(
C(z)

zn+1
, z = 1

)
+

1

2iπ

∫
Γr

C(z)

zn+1
dz (15)

where Γr is a circle (with a positive orientation) of center 0 and radius r with 1 < r ≤ ρ.
The integral term in (15) gives rise to a remainder term in O(ρ−n). The equality

Res

(
1

(z − 1)j
1

zn+1
, z = 1

)
=

(
n+ j − 1

j − 1

)
together with the singular expression of C(z) at z = 1, namely

C(z) =
a

(z − 1)j
+

b

(z − 1)j−1
+O

(
1

(z − 1)j−2

)
,

provide the expression for the residue. The possible isolated poles B(z) on the punctured
circle {|z| = 1 | z 6= 1} give rise to terms of asymptotically constant order and are thus
remainder terms as soon as j ≥ 3. 2

We now prove Proposition 9.

Proof of Proposition 9. First, Lemma 10 applies to the asymptotic behaviour of the de-
nominator with B(z) = 1 and j = `. (Recall that ` ≥ 2.)
Second, Lemma 10 also applies to the asymptotic behaviour of the numerator, with two
main cases. In the case when a < 1, we choose

j = `, B(z) :=
A(z)

1−A(z)
, B(1) = a =

a

1− a
.

In the case when a = 1, we choose

j = `+1, B(z) = A(z)· 1− z
1−A(z)

with B(z) =
1

b
+(1−z)

(
1− e

2b2

)
+O(1) (z → 1).

In both cases, Hypothesis (c) entails that B(z) admits only possibly simple isolated poles
on the punctured circle {|z| = 1 | z 6= 1}. 2

5.4. A general framework for limit laws.

In the same vein as for expectations, we design a general framework for distributions
described by the following proposition. In all the cases, the cumulative generating function
of the event [C ≥ m] is expressed as a product of the function U(z)` which has a pole
of order ` at z = 1/q, with a “large power” of a function A(z). The term “large power”
is used since the exponent m may depend on the size n. The following proposition deals
with this case.

Proposition 11. [Coefficients extraction and distribution.] Consider a combinatorial
structure, with a cost C, whose bivariate generating function C(z, u) is of the form

C(z, u) =
1

(1− z)`
· 1−A(z)

1− uA(z)
, (` ≥ 2) . (16)
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(i) Then the distribution of the cost C is expressed as

Pn[C ≥ m] =
[zn]Ĉ [m](z)

[zn](1− z)−`
, with Ĉ [m](z) =

1

(1− z)`
·A(z)m.

(ii) Assume now the following:
(a) A(z) is analytic in a disk |z| ≤ ρ, with ρ > 1;
(b) a := A(1) 6= 0, b := A′(1) ≥ 0;
(c) for |z| close enough to 1, |A(z)| ≤ A(|z|).

Then, for any pair (m,n) whose ratio m/n belongs to the interval [0, c], with c =
a/b, the following estimates hold for the probabilities Pn[C ≥ m].

In the case a = 1, one has

Pn[C ≥ m] =

[(
1− b

a

m

n

)̀−1

+O

(
1

nα

)]
, α = min

(
1,

(`− 1)2

2`− 1

)
.

In the case a < 1, one has

Pn[C ≥ m] = am +O

(
log n

n

)
.

In both cases, the hidden constant in the O–term is uniform with respect to m,
when m/n belongs to the interval [0, c].

5.5. Distributional analysis.

Before proving Proposition 11, we explain how it leads to Theorem 3.

Proof of Theorem 3. As previously, we deal with the costs Lk − 1 and Dk, and we will
shift the distributions for Lk − 1 in order to return to Lk. In each case, the functions
Ak(z) of interest are provided by Equation (14). In both cases, (case Dk or case Lk− 1),
the function Ak(z) is a multiple of zk and this entails the equalities

Pn [Dk > n/k] = 0, Pn [Lk > n/(k + 1)] = 0.

The hypotheses of Proposition 11 are fulfilled for the functions Ak, with

ak = q1−k,
bk
ak

= k (case Dk),

ak =
q − 1

qk − 1
,

bk
ak

= (k + 1)
qk

qk − 1
. (case Lk − 1).

For k = 1, the constants ak are equal to 1, whereas they are strictly less than 1 for k ≥ 2.
This ends the proof of Theorem 3. 2

5.6. Proof of Proposition 11.

Proof. The coefficient [zn]Ĉ [m](z) is the residue at z = 0 of the function Ĉ [m](z)/zn+1.
This function has two poles inside the disk |z| ≤ ρ, the pole z = 0 and the pole z = 1.
Then, the residue theorem entails the equality

[zn]C [m](z) = −Res

(
Ĉ [m](z)

zn+1
, z = 1

)
+

1

2iπ

∫
Γr

Ĉ [m](z)

zn+1
dz (17)
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where Γr is a circle (with a positive orientation) centered at the origin of radius r with
1 < r ≤ ρ. We study the two terms in (17). In both studies, the functions

Rn,m(z) :=
Am(z)

zn
(18)

will play an important role in the proof.

Study of the residue. The residue at z = 1 equals

Res

(
Ĉ(m](z)

zn+1
; z = 1

)
=

(−1)`−1

(`− 1)!

d`−1

dz`−1

[
A(z)m

zn+1

]
z=1

.

We write

Rn+1,m(z) =
A(z)m

zn+1
= exp[−ng(z)], with g(z) =

1

n

(
−m logA(z) + (n+ 1) log z

)
.

The derivative of g at z = 1 is positive provided that the ratio m/n is at most equal to
c = a/b with a = A(1) and b = A′(1). The k-th derivative of Rn+1,m(z) at z = 1 is of
the form

(−1)kam · Pk(m,n)

where Pk(m,n) is a polynomial of degree at most k (with respect to n) which has a
unique term of degree k equal to nkg′(1)k. Finally, provided that m/n is at most equal
to c = a/b, one has

d`−1

dz`−1

[
A(z)m

zn+1

]
z=1

= (−1)`−1am
[
n`−1g′(1)`−1 +O

(
n`−2

)]
,

and, with a := A(1), b := A′(1),

Res

(
Ĉ(m](z)

zn+1
; z = 1

)
= am

n`−1

(`− 1)!

[(
1− m

n

b

a

)`−1

+O

(
1

n

)]
,

where the constant in the O-term is uniform when the ratio m/n belongs to [0, c].

Study of the integral. With Hypothesis (c), the following upper bound holds∣∣∣∣∣ 1

2iπ

∫
Γr

Ĉ [m](z)

zn+1
dz

∣∣∣∣∣ ≤ A(r)m

rn
1

(r − 1)`
.

Consider the function R = Rn,m defined as in (18). Using the definition of a and b, and
letting d := 2 sup {|(logA(r))′′| ; r ∈ [1, ρ]}, one has

1

n
logRn,m(r) ≤ 1

n
logRn,m(1) + (r − 1)

[
−
(

1− m

n

b

a

)
+ (r − 1)

m

n
d

]
.

Condider any pair (m,n) whose ratio m/n is at most equal to c0 with c0 < c, and
c = a/b. There are two cases according to d: the case d = 0, which occurs when the
function logA(z) is linear (this will occur in our D–case), and the case d > 0. In the first
case, the second term of the right member is negative, and in the second case, this is also
true as soon as r − 1 is small enough. More precisely, let

r − 1 = A
(

1− c0
c

)
, with A :=

1

2c0d
.
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Then, in both cases, for any pair (m,n) with m/n ≤ c0, one has

Rn,m(r)

Rn,m(1)
≤ exp

[
−n

2

(
1− c0

c

)2
]

and thus

∣∣∣∣∣ 1

2iπ

∫
Γr

Ĉ [m](z)

zn+1
dz

∣∣∣∣∣ = amO
(

1− c0
c

)−`
,

where the constant in the O–term does not depend on c0.

Study of probabilities. Now, with the normalisation provided by the denominator, de-
scribed in Proposition 10, and for any pair (m,n) whose ratio belongs to the interval
[0, c0] with c0 < c, the following estimate holds

Pn[C ≥ m] = am
[
1 +O

(
1

n

)][(
1− m

n

b

a

)`−1

+O

(
1

n

)
+O

(
1

n`−1

)(
1− c0

c

)−`]
,

where the constants of the O-term are uniform. We let now c0 → c as a function of n,
and study in a separate way the cases a = 1 and a < 1.

Case a = 1. We consider (1 − c0/c) = n−α so that one has n`−1 (1− c0/c)` = n`−1−α`.
Then, one has

for m/n ≤ c0, Pn[C ≥ m] =

(
1− m

n

b

a

)`−1

+O(n−(`−1)+α`) +O(n−1),

for m/n ≥ c0, Pn[C ≥ m] = O(n−α(`−1)) +O(n−(`−1)+α`) +O(n−1).

The best choice is α = (`− 1)/(2`− 1), which gives the result.

Case a < 1. We let m0 := log1/a n. Then, one has

for m/n ≤ m0, Pn[C ≥ m] = am +O

(
log n

n

)
,

for m/n ≥ m0, Pn[C ≥ m] = am +O

(
1

n

)
.

This ends the proof of Proposition 11. 2

5.7. Study of global parameters.

Let us now prove Theorem 5.

Assertion (a). It is a direct consequence of Theorem 3 together with the fact that the
events [Π ≥ k] and [Dk ≥ 1] coincide, by definition of the variable Π.

Assertion (b). The total number of divisions L̃ of the interrupted algorithm can be written
as a sum of variables L̃k:(

L̃ =

Π∑
k=1

Lk if Π ≥ 1

)
=⇒ L =

`−1∑
k=1

L̃k with L̃k := Lk · 1[k≤Π].

One has Lk− L̃k = Lk ·1[k>Π]. The inclusion [Dk = 0] ⊂ [Lk = 1], together with the fact
that the events [Π < k] and [Dk = 0] coincide, entails the equality Lk · 1[Π<k] = 1[Π<k],
and thus,

En[Lk]− En[L̃k] = En[1[Π<k]] = Pn[Π < k] = 1− Pn[k ≤ Π].
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Then Theorems 2 and 3 apply, and we obtain

En[L̃k] =
q − 1

qk − q
+
q

qk
+O

(
1

n

)
(for k ≥ 2), En[L̃1] = En[L1]+O

(
1

n

)
(for k = 1) .

We conclude with the linearity of the mean.

Assertion (c). We now prove that L asymptotically follows a beta law, the same as L1.
We split the random variable L into two random variables, namely

(i) the main random variable L1, which admits a beta limit law (Theorem 3),
(ii) the remainder random variable R = L − L1, which is a sum of random variables,

each of them admitting an asymptotic geometric law.

The next proposition shows that, in this situation, the sum L = L1 + R asymptoti-
cally follows the same beta law as L1. This provides an extension of the result obtained
in (Lhote and Vallée, 2008) for Gaussian laws.

Proposition 12. Consider a sequence of probabilistic spaces (Ωn,Pn)n and two sequences
of random variables Xn and Yn defined on Ωn with integer values. Assume the following.

(i) There exists a sequence γn → ∞ for which the random variable Xn/γn asymp-
totically follows a law whose distribution function is a function f : [0, c] → [0, 1],
increasing, Lipschitz, with f(0) = 0 and f(c) = 1. For any c0 < c, there exists a
sequence (εn)n, with εn → 0, for which, for any n, and for any d ∈ [0, c0], one has

Pn[Xn < dγn] = f(d) +O(εn).

(ii) The random variable Yn is a sum of (`− 2) variables Yk,n, each of them admitting
an asymptotic geometric law of ratio 1/ak, with ak > 1.

Then, the random variable Xn + Yn asymptotically follows the same law as Xn. More
precisely, let a := (min ak)1/(`−2). Then, for any c0 < c, for any n, and for any d ∈ [0, c0],
one has

Pn[Xn + Yn < dγn] = f(d) +O

(
εn +

1

γn
| loga εn|

)
.

Proof. Consider a sequence (δn)n which will be made precise later, and define the two
events En and Fn as

En = [Xn + Yn < dγn], Fn = [Yn ≤ δn].

The asymptotic geometric law of each Yk,n yields

Pn[En ∩ F cn] ≤ Pn[F cn] = O(a−δn) . (19)

Indeed, this bound is due to the following inclusion between the events

[Yn > δn] ⊂
`−1⋃
k=2

[
Yk,n >

δn
`− 2

]
which entails (recall that a = (min ak)1/(`−2)), the following upper bound

Pn[Yn ≥ δn] = O(a−δn).

On the other hand, the following inclusions hold:

[Xn ≤ dγn − δn] ∩ Fn ⊂ En ∩ Fn ⊂ [Xn ≤ dγn + δn]. (20)
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The rightmost inclusion in (20) and the Lipschitz condition on f entail the upper bound

Pn[En ∩ Fn] ≤ f
(
d+

δn
γn

)
+O(εn) = f(d) +O

(
εn +

δn
γn

)
. (21)

The leftmost inclusion in (20) together with (19) and the Lipschitz condition entail the
lower bound

Pn[En ∩ Fn] ≥ f(d) +O

(
εn + a−δn +

δn
γn

)
. (22)

With relations (19), (21) and (22), we obtain

Pn[En] = f(d) +O

(
εn + a−δn +

δn
γn

)
.

Then the optimal choice δn = |loga εn| concludes the proof. 2

To derive the proof of Theorem 5, we apply the previous proposition to the variables
L1 and (L− L1) with

γn = n, εn = O

(
1

n

)
, δn = loga n, c =

q − 1

2q
, f(d) = 1−

(
1− d

c

)`−1

.

6. Main results in the number case.

We now consider the analysis of the plain algorithm in the case of integers, and conduct
a study that will appear to be very close to the previous one, dedicated to the polynomial
inputs. As usual (see, e.g., (Lhote and Vallée, 2008; Vallée, 2006)), the polynomial study
shows the road, and similar results are expected in the integer study, even if they are
often more difficult to obtain and sometimes less precise.

In the integer case, the `–plain Euclid algorithm has exactly the same structure as
in the polynomial case. It is composed of ` − 1 phases, each of them being the Euclid
algorithm which performs the gcd computation between two integers.

We first define below the notion of size in Section 6.1. We then introduce further
concepts specific to the number case, namely transfer operators in Section 6.2, and vari-
ations around the zeta function in Section 6.3. We then can formulate the main results
in Section 6.5 (average case) and Section 6.6 (limit laws).

6.1. Set of inputs and notion of size.

The possible inputs are all the sequences x formed of ` integers, and we limit ourselves
to positive integers, without loss of generality. The set of inputs is thus Ω = N`+, where
N+ is the set of positive integers.

In the integer framework, the size is usually the binary length ν, defined as the number
of digits in the binary expansion, namely ν(x) = 1+blog2 xc. Here, it is more convenient 4

to define the size d of an integer x as

d(x) := blog xc .

4 The choice of the base 2 would introduce the factor log 2 in many places in the asymptotic analysis.
And we eliminate the additive factor +1, as we wish to have the equality d(1) = 0, as in the polynomial
case.
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The size d(x) of the input x = (x1, x2, . . . , x`) is then defined as

d(x) := d(x1x2 . . . x`) = blog(x1x2 . . . x`)c.

Observe that the difference between d(x) and the total binary size occupied by the `-uple
x is bounded. Here again, the subset Ωn of inputs with size n is

Ωn := {x ∈ N` | d(x1x2 . . . x`) = n} = {x ∈ N` | blog(x1x2 . . . x`)c = n}.

Then, we also deal with the notion of product length. The product length of a sequence
x = (x1, x2, . . . , x`) is defined as the product

π(x) := x1x2 . . . x`

of its components. With this notation, the set of the inputs of size n

Ωn = {x | en ≤ π(x) < en+1}

gathers the inputs whose product length belongs to the interval [en, en+1[. This is a finite
set, and it is endowed with the uniform probability.

6.2. The underlying dynamical system and the transfer operator.

In the integer case, the 2-Euclid algorithm is described with the underlying dynamical
system ([0, 1], S), namely the Gauss map S defined on the unit interval [0, 1] by

S(x) := 1/x− b1/xc, if x 6= 0, and S(0) = 0.

We use in particular the transfer operator of the dynamical system, introduced in a
general setting in Ruelle (2004) and deeply studied in the case of the Gauss map in
Mayer (1990). This operator deals here with the Gauss map S and the set G of its
inverse branches, namely

G :=

{
hm(x) : x 7→ 1

m+ x
| m ≥ 1

}
.

It extends the Perron-Frobenius operator, it now involves a complex parameter s, and
acts for <s > 1 on functions f defined on the unit interval as 5

Gs[f ](x) =
∑
h∈G

|h′(x)|s/2 · f ◦ h(x) =
∑
m≥1

1

(m+ x)s
· f
(

1

m+ x

)
. (23)

In particular, the relation

Gs[1](0) =
∑
h∈G

|h′(0)|s/2 =
∑
n≥1

1

ns
= ζ(s) (24)

relates the transfer operator to the Riemann ζ function ζ(s). There is also a nice formula 6

which relates the quasi-inverse of the transfer operator and the Riemann ζ function,
namely

(I −Gs)
−1[1](0) = 2

ζ(s− 1)

ζ(s)
. (25)

5 The usual definition of Gs is with the exponent s and not s/2 as here. But the present choice is more

convenient here.
6 See a proof of this relation, e.g., in (Flajolet and Vallée, 1998), where unfortunately the expression

and the proof are not completely exact, there is indeed an extra factor −1.
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It will be extended in Equation (31) of Proposition 16 into

(I −Gs+t)
−1 ◦ (Gs + Gt)[1](0) = 2

ζ(s)ζ(t)

ζ(s+ t)
.

In particular, the function ϕs,t defined for <s > 1 and <t > 1 as

ϕs,t(x) :=
1

2

ζ(s+ t)

ζ(s)ζ(t)
(I −Gs+t)

−1 ◦ (Gs + Gt)[1](x) (26)

is equal to 1 at x = 0. It can be extended (it will be proved and used later) when the
parameter t is equal to 1, or when the pair (s, t) is equal to (1, 1) as

ϕs,1(x) =
1

2

ζ(s+ 1)

ζ(s)
(I −Gs+1)−1[1](x), ϕ1,1(x) =

1

1 + x
, (27)

and it plays an important rôle (see Assertion (b) of Theorem 13 and 14).

Here, the operator Gs is viewed as a generating operator for continued fractions, and
it will play exactly the same role as the generating functions G(z) for polynomials. (We
will return to this point in Section 6.4.) We will describe more deeply the functional
properties of the operator Gs in Section 8.4, but we now mention an essential property
of this operator.

On a convenient functional space, and when s is close to the real axis, the operator G2s

admits a unique dominant eigenvalue denoted by λ(s). For s = 1, the eigenvalue λ(s)
equals 1 and the eigenfunction is equal to 1/(1 + x). The derivative of s 7→ λ(s) at s = 1
equals −h/2 where 7 h is the entropy of the dynamical system provided by the Gauss map,
equal to π2/(6 log 2).

6.3. Various zeta functions.

There are also further close connections between the operator Gs and the Riemann ζ
function, as we now see. The Riemann ζ function and the Hurwitz ζ functions are

ζ(s) :=
∑
n≥1

1

ns
, ζ(s, 1 + x) :=

∑
n≥1

1

(n+ x)s
.

The relation

Gs[1](x) =
∑
h∈G

|h′(x)|s/2 =
∑
n≥1

1

(n+ x)s
= ζ(s, 1 + x)

holds, and explains the role of the Hurwitz ζ function here. We will be led to consider
two variations of the ζ function, namely the truncated ζ function for indices n at least
equal to M

ζM (s) :=
∑
n≥M

1

ns
, (28)

that intervenes in Assertion (d) of Theorem 14, and the bivariate ζ function, with the
variable u marking the size d,

Z(s, u) :=
∑
n≥1

ud(n)

ns
, (29)

7 The occurrence of the factor 1/2 is due to the change of variable s 7→ s/2 already mentioned.

26



together with its cumulative generating function,

ζ̂ ′(s) :=
d

du
Z(s, u)

∣∣
u=1

=
∑
n≥1

d(n)

ns
, (30)

which resembles the derivative of ζ(s). We call here the modified derivative of the ζ
function. It intervenes in Assertion (d) of Theorem 13.

6.4. From the polynomial to the number setting.

Let us now discuss the analogy between the analyses in the two settings (polynomials
and integers). In the polynomial setting, the analysis was based on classical analytic
combinatorics, with power generating functions, whereas in the number case, it will be
based on dynamical combinatorics and Dirichlet generating functions. In both cases,
the `-Euclid algorithm translates as a product of generating functions (of power type
for polynomials, and of Dirichlet type for integers), with each factor being associated
with a given phase. Each phase is a sequence of divisions, which is expressed with the
power generating function G(z) in the polynomial setting, and, in the integer setting,
with the functional operator Gs that generates the quotients. The coefficient extraction
is provided in the polynomial case by the Cauchy formula on circles and in the number
case, by the Perron formula on vertical lines. The dominant singularity is located at the
complex z for which G(zk+1) = 1 (polynomial case), and at the complex s for which
λ((k + 1)s) = 1 (number case). The following notation table stresses the parallelism
between the generating functions that will be introduced for the number case in Section
7 and those which have been already introduced in Section 4, even though they are of
power type in the polynomial setting, and of Dirichlet type in the integer setting.

6.5. Average-case analysis.

The following result is an exact analog of Theorem 2. In particular, in Assertion (a),
the entropy π2/(6 log 2) of the integer Euclidean system (that is, of the Gauss map)
replaces its polynomial analog (2q)/(q − 1) on Fq[X].

Theorem 13. [Expectations.] When the set Ωn is endowed with the uniform distribution,
the following holds.

(a) The expectation of the number of iterations L1 during the first phase is linear with
respect to the size n and satisfies

En[L1] =
6 log 2

π2
· n
`

+K +O

(
1

n

)
where the constant K depends on the dominant spectral objects of the operator G2

and is given in Equation (51) in Section 9.

(b) For any k ∈ [2..` − 1], the expectation of the number of iterations Lk during the
k-th phase is asymptotic to a constant which is expressed in terms of the operator
Gs defined in (23), taken at s = k + 1, and of the function ϕk,1 defined in (27),
that is,

En[Lk] = (I −Gk+1)−1[ϕk,1](0) +O

(
1

n

)
.
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U(z)
1

1− qz
ζ(s)

∑
n≥1

1

ns

T (z, t)
U(z) + U(t)− 1

1−G(zt)
2T (s, t) (I −Gs+t)

−1 ◦ (Gs + Gt)[1](0)

T (z, t, u) u · U(z) + U(t)− 1

1− u ·G(zt)
2T (s, t, u) u · (1− u ·Gs+t)

−1 ◦ (Gs + Gt)[1](0)

Lk(z, u) U(z)` · T (z, zk, u)

T (z, zk)
Lk(s, u) ζ(s)` · T (s, ks, u)

T (s, ks)

U(t, u)
1

1− qut
Z(s, u)

∑
n≥1

ud(n)

ns

Dk(z, u) U(z)` · U(zk, u)

U(zk)
Dk(s, u) ζ(s)` · Z(ks, u)

ζ(ks)

L̂k(z) U(z)` · 1− qzk+1

1− q2zk+1
L̂k(s) ζ(s)` · (I −G(k+1)s)

−1[ϕks,s](0)

L̂
[m]
k (z) U(z)` ·G(zk+1)m−1 L̂

[m]
k (s) ζ(s)` ·Gm−1

(k+1)s[ϕks,s](0)

D̂k(z) U(z)` · qzk

1− qzk
D̂k(s) ζ(s)` · ζ̂

′(ks)

ζ(ks)

D̂
[m]
k (z) U(z)` · (qzk)m D̂

[m]
k (s) ζ(s)` · ζe

m(ks)

ζ(ks)

Fig. 5. Generating functions (power series on the left for the polynomial case and Dirichlet type
series on the right for the number case).

(c) The expectation of the size of the first integer x1 is linear with respect to the size n
and satisfies

En[D1] =
n

`
.

(d) For any k ∈ [2..`− 1], the expectation of the size Dk of the gcd yk at the beginning
of the k-th phase is asymptotic to a constant which involves both the ζ function and
its modified derivative defined in (30) at s = k, that is,

En[Dk] =
ζ̂ ′(k)

ζ(k)
+O

(
1

n

)
.

The constant K is computed in Section 9.10. It involves explicit constants like the
Euler-Mascheroni constant γ or ζ ′(2). But it also involves dominant spectral objects of
G2s around s = 1 that, as far as we know, do not have explicit closed-form expressions.

6.6. Limit laws.

The following results are analogs of the corresponding theorems in the polynomial
case, but they are not their exact analogs. For the first phase, there are asymptotic beta
laws, exactly as in the same vein as before; in particular, the entropy of the Euclid
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dynamical system π2/(6 log 2) replaces its polynomial case analog. However, the results
for subsequent phases (k ≥ 2) are not the exact analogs of their polynomial counterparts.
In the polynomial case, we have exhibited asymptotic geometric laws: for each k, there
exists a ratio ak for which

Pn[Lk > m] = amk +O

(
log n

n

)
, Pn[Dk ≥ m] = amk +O

(
log n

n

)
.

Now, we obtain asymptotic (quasi)-geometric laws, that is,

Pn[Lk > m] = ak,m +O

(
log n

n

)
, Pn[Dk ≥ m] = ak,m +O

(
log n

n

)
,

where ak,m is not an exact m-th power, but only an asymptotic m-power (when m→∞):
there exist ak, bk and ρk > 1 for which

ak,m = bka
m
k

(
1 +O(ρ−mk )

)
.

We will say that it is a (quasi)-geometric asymptotic law with ratio ak.
For instance, in the D–case, the distribution involves the distribution of the Zipf law

of order k, namely x 7→ ζx(k)/ζ(k), composed with an exponential change of variable
x 7→ ex. This does not give rise to a “true” geometric law, but a (quasi)-geometric law.

Theorem 14. [Limit laws.] When the set Ωn is endowed with the uniform distribution,
the following holds.

(a) The number of steps L1 during the first phase asymptotically follows a beta law with
parameters (1, `−1) on the interval [0, (6 log 2)/π2]: for any pair (m,n) whose ratio
m/n belongs to the interval [0, (6 log 2)/π2], the probability of the event [L1 > m]
satisfies

Pn[L1 > m] =

(
1− m

n

π2

6 log 2

)`−1

+O

(
1

nα

)
,

where the constant of the O-term is uniform when m/n belongs to [0, (6 log 2)/π2].

(b) The number of steps Lk during the subsequent phases asymptotically follows a
(quasi)-geometric law with ratio λ(k + 1): for any pair (m,n) for which the ra-
tio m/n belongs to the interval [0, λ(k+ 1)/|λ′(k+ 1)|], the probability of the event
[Lk > m] satisfies

Pn[Lk > m] = Gm
k+1[ϕk,1](0) +O

(
log n

n

)
,

where the constant hidden in the O-term is uniform when m/n belongs to the in-
terval [0, λ(k+ 1)/|λ′(k+ 1)|]. Here, the operator Gs is the transfer operator of the
Euclidean dynamical system defined in (23), λ(s) is its dominant eigenvalue, and
the function ϕk,1 is defined in (27).

(c) The size D1 of the first gcd x1 asymptotically follows a beta law of parameter
(1, `− 1) on the interval [0, 1]: for any pair (m,n) for which the ratio m/n belongs
to the interval [0, 1], the probability of the event [L1 ≥ m] satisfies

Pn[D1 ≥ m] =
(

1− m

n

)`−1

+O

(
1

nα

)
,
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where the constant of the O-term is uniform when m/n belongs to [0, 1].

(d) The size Dk of the gcd yk at the beginning of the phase of index k ∈ [2..`] asymptot-
ically follows a (quasi)-geometric law with ratio e1−k: for any pair (m,n) for which
the ratio m/n belongs to the interval [0, 1], the probability of the event [Dk ≥ m]
involves both the function ζ(s) and its truncated version ζM defined in (28), both
taken at s = k, under the form

Pn[Dk ≥ m] =
ζem(k)

ζ(k)
+O

(
log n

n

)
,

where the constant hidden in the O-term is uniform when m/n belongs to [0, 1].

6.7. Global parameters in the number case.

The following results are the analog of Theorem 5 and the proof follows the same
principles.

The interrupted algorithm stops as soon as the gcd yk is 1. If Π(x1, . . . , x`) is the
number of useful phases, the event [Π ≥ k] coincides with the event [Dk ≥ 1] for k ∈
[1..` − 1], which is estimated in Theorem 14. Then, it is possible to consider the total
number L and L̃ of divisions performed by the naive algorithm and its interrupted version.

Theorem 15. [Global parameters.] When the set Ωn is endowed with the uniform dis-
tribution, the following holds.

(a) The distribution of the number Π of useful phases satisfies Pn[Π ≥ 0] = 1, Pn[Π ≥
`] = 0, Pn[Π ≥ 1] = 1 +O(n−α) and

Pn[Π ≥ k] =
ζe(k)

ζ(k)
+O

(
log n

n

)
for k ∈ [2..`− 1].

(b) The total number of divisions L̃ performed by the interrupted version of the `-Euclid
algorithm has an expected value En[L̃] equal to

6 log 2

π2
· n
`

+K +

`−1∑
k=2

(
(I −Gk+1)−1[ϕk,1](0) +

ζe(k)

ζ(k)
− 1

)
+O

(
1

nα

)
.

(c) The total number L of iterations, and the total number L̃ of iterations of the inter-
rupted algorithm both asymptotically follow a beta distribution of parameter (1, `−1)
on the interval [0, 6 log 2/π2] with a speed of convergence O(log n/n).

7. Generating functions in the number case.

7.1. Dirichlet generating functions.

In the integer case, the study also relies on generating functions, being now of Dirichlet
type.

The basic one is the (Dirichlet) generating function of the set N`+. We deal with `–uples
x of positive integers x = (x1, x2, . . . , x`) and consider the generating function

F (s1, s2, . . . , s`) =
∑
x∈N`

+

1

xs11

1

xs22

. . .
1

xs``
= ζ(s1) . . . ζ(s`),
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where the ζ function is the generating function of N+, that is,

ζ(s) :=
∑
n≥1

1

ns
.

In particular, the main case of interest s1 = s2 = . . . s` = s gives rise to

F (s) := F (s, . . . , s) =
∑
x∈N`

1

π(x)s
= ζ(s)`,

recalling that π(x) = x1x2 . . . x`.

Consider now the case when the `–uple s = (s1, . . . , s`) is general. As previously in

the polynomial case with Proposition 6, we first provide an alternative “algorithmic”

expression for the generating function ζ(s1) ζ(s2) as

ζ(s1) ζ(s2) = ζ(s1 + s2) · T (s1, s2),

where the generating function T (s1, s2) describes the Euclid algorithm on two integers.

The following result is thus an analog of Proposition 6.

Proposition 16. [Phase-function.] The generating function F (s) of Ω = N`+ (with re-

spect to the product length) decomposes as

F (s) = ζ(s)` = ζ(`s) ·
`−1∏
k=1

T (s, ks),

where the phase-function T is defined as

T (s, t) :=
ζ(s)ζ(t)

ζ(s+ t)
.

Moreover, it can be expressed in terms of the transfer operator Gs relative to the Euclid

dynamical system, defined in (23), as

T (s, t) =
1

2
(I −Gs+t)

−1 ◦ (Gs + Gt)[1](0). (31)

Proof. We again begin with the first phase. The gcd y2 := gcd(x1, x2) together with the

sequence of quotients (m1,m2, . . . ,mr) completely determines the input pair (x1, x2).

More precisely, one writes (x1, x2) = (y2 x̂1, y2 x̂2) with a coprime pair (x̂1, x̂2) and

the execution of the Euclid algorithm on the pair (x̂1, x̂2) produces the same sequence

(m1,m2, . . . ,mr) as the pair (x1, x2), with now remainders x̂i satisfying xi = y2x̂i. Then

the Dirichlet series decomposes as

F (s1, s2) =
∑
x1,x2

1

xs11

1

xs22

=
∑
y2≥1

1

ys1+s2
2

∑
x̂1,x̂2

1

x̂s11

1

x̂s22

= ζ(s1 +s2)

∑
x̂1,x̂2

1

x̂s11

1

x̂s22

 . (32)

We need an alternative form for the last series. The Euclid algorithm first compares the

two integers x1 and x2 (and then the two integers x̂1 and x̂2). There are three cases:

x̂1 = x̂2 = 1, x̂1 > x̂2, x̂1 < x̂2.
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The execution of the Euclid algorithm on the pair (x̂1, x̂2) with x̂1 > x̂2 builds con-

tinued fraction expansions for the two rational numbers, namely

x̂2

x̂1
= h ◦ g(0),

x̂3

x̂2
= g(0).

Here, h := hm1 is related to the first quotient and g =: hm2◦hm3◦. . .◦hmr is related to the

sequence (m2,m3, . . . ,mr). Since the two pairs (x̂1, x̂2) and (x̂2, x̂3) are coprime, the de-

nominators of the two rational numbers x̂2/x̂1 and x̂3/x̂2 are expressed with derivatives,

namely
1

x̂2
1

= |(h ◦ g)′(0)| = |h′(g(0))| · |g′(0)|, 1

x̂2
2

= |g′(0)|.

Hence, in the case when x̂1 ≥ x̂2 (which covers x̂1 = x̂2 = 1 and x̂1 > x̂2), the sum∑
x̂1≥x̂2

1

x̂s11

1

x̂s22

= 1 +
∑
h,g

|h′(g(0))|s1/2 · |g′(0)|(s1+s2)/2,

can be expressed, using Relation (24), with the transfer operator Gs as

1

2

(
1 + (I −Gs1+s2)−1 ◦Gs1 [1](0)

)
.

The factor (1/2) is here to take into account the fact that any rational of ]0, 1] admits

two continued fraction expansions, namely the proper one and the improper one (see

(Lhote and Vallée, 2008) for more details).

The case x̂2 ≥ x̂1 can be dealt with exchanging the roles of x̂1 and x̂2. Finally, there

is an alternative expression for the series∑
x̂1,x̂2

1

x̂s11

1

x̂s22

=
1

2
(I −Gs1+s2)−1 ◦ (Gs1 + Gs2) [1](0).

Finally, with (32), the Dirichlet series F (s1, s2) decomposes as

F (s1, s2) = ζ(s1) ζ(s2) = ζ(s1 + s2) · T (s1, s2),

with

T (s, t) =
ζ(s)ζ(t)

ζ(s+ t)
=

1

2
(I −Gs+t)

−1 ◦ (Gs + Gt)[1](0), (33)

which corresponds to the definition of T provided by (31).

When we replace this expression into the total product

ζ(s1) ζ(s2) . . . ζ(s`) = F (s1, s2, . . . , s`),

and iterate the transformation, we obtain an alternative expression for the generating

function F (s1, s2, . . . , s`) with a product of ` − 1 factors, each of them involving the

phase-function T at points sk and tk = s1 + . . .+ sk, that is,

F (s1, s2, . . . , s`) = ζ(t`) ·
`−1∏
k=1

T (tk, sk+1).

It may be useful in some studies to keep all the variables si, but, here again, we let

s1 = s2 = . . . = s` = s, and we obtain the expression of the generating function F (s). 2
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7.2. Dirichlet generating functions for parameters.

As in the polynomial case, for studying a cost C on Ω = N`+, we consider the bivariate

generating function relative to the cost C, obtained by introducing a further variable u

to mark the cost, and defined as

C(s, u) :=
∑
x∈N`

1

π(x)s
uC(x).

When studying the parameter Lk (number of steps in the k-th phase), the extra

variable u marks each step of the k-th iteration, and we deal with the generating function

T (s, t, u) :=
1

2
· u · (1− u ·Gs+t)

−1 ◦ (Gs + Gt)[1](0), with t = ks (34)

which replaces T (s, ks) inside F (s). Then, for any k ∈ [1..`− 1], the bivariate generating

function Lk(s, u) relative to the number of divisions during the k-th phase is written as

Lk(s, u) = ζ(s)` · T (s, ks, u)

T (s, ks)
. (35)

When studying the parameter Dk (which is the size of the gcd at the beginning of the

k-th phase), we use again the extra variable u which now marks the size of the gcd yk,

and we deal with the generating function Z(t, u) defined in (29) at t = ks, which replaces

ζ(ks) inside F (s). Then, for any k ∈ [1..`− 1], the bivariate generating function Dk(z, u)

relative to the size of the k-th gcd yk at the beginning of the k-th phase is written as

Dk(s, u) = ζ(s)` · Z(ks, u)

ζ(ks)
. (36)

Compare the expressions obtained in (35) and (36) with (7) in the polynomial setting.

Then, for studying the expectation of cost C (see (1)), we deal with the cumulative

generating function given by

Ĉ(s) :=
∂C

∂u
(s, u)

∣∣∣
u=1

.

For the distribution of C (see (2)), we use the generating function of the event [C ≥ m]

that is also a cumulative generating function which is related to the generating function

C(s, u) as

Ĉ [m](s) :=
∑
i≥m

[ui]C(s, u).

As in the polynomial study, the series Ĉ(s) is the sum of the series Ĉ(m](s).

Finally, we obtain the following analog of Proposition 7.

Proposition 17. [Generating functions.] Consider the transfer operator Gs defined in

(23), the function ϕs,t defined in (26), the Riemann ζ function, the bivariate Riemann

series Z(s, u) defined in (29), the modified derivative ζ̂ ′(s) defined in (30), and its trun-

cated version ζM (s) defined in (28).

33



(i) The bivariate generating function Lk(s, u), as well as the cumulative generating

functions L̂k(s) and L̂
[m]
k (s) relative to the number of divisions during the k-th

phase satisfy

Lk(s, u)

ζ(s)`
=
ζ((k + 1)s)

ζ(ks)ζ(s)
u · (1− u ·G(k+1)s)

−1 ◦ (Gks + Gs)[1](0),

L̂k(s)

ζ(s)`
= (I −G(k+1)s)

−1[ϕks,s](0) ,
L̂

[m]
k (s)

ζ(s)`
= Gm−1

(k+1)s[ϕks,s](0) .

(ii) The bivariate generating function Dk(s, u), as well as the cumulative generating

functions D̂k(s) and D̂
[m]
k (s) relative to the degree Dk of the gcd at the beginning

of the k-th phase satisfy

Dk(s, u)

ζ(s)`
=
Z(ks, u)

ζ(ks)
,

D̂k(s)

ζ(s)`
=
ζ̂ ′(ks)

ζ(ks)
,

D̂
[m]
k (s)

ζ(s)`
=
ζem(ks)

ζ(ks)
.

Remark 18. According to Remark 1, one has Pn[Dk ≥ 0] = 1 in the D–case, whereas

one has Pn[Lk ≥ 1] = 1 in the L-case. Note that ζem(s) = ζ(s) for m = 0.

Remark 19. The two bivariate generating functions are written as

C(s, u) = ζ(s)`
A(s, u)

A(s, 1)
, (37)

with A(s, u) = Z(s, u) [D-case], A(s, u) = u·(1−u·G(k+1)s)
−1◦(Gks+Gs)[1](0) [L-case].

Proof. We first consider the generating functions L̂
[m]
k (s) and D̂

[m]
k (s).

In the L–case, extracting with respect to u in Lk(s, u), given in (35), only involves the

term T (s, ks, u) in the numerator. One has

2
∑
i≥m

[ui]T (s, ks, u) =
∑
i≥m

[ui]u · (I − u ·G(k+1)s)
−1 ◦ (Gs + Gks)[1](0)

= Gm−1
(k+1)s ◦ (I −G(k+1)s)

−1 ◦ (Gs + Gks)[1](0).

Then, introducing T (s, t) and the functions ϕs,t, one gets

2ϕs,t(x) =
ζ(s+ t)

ζ(s)ζ(t)
(I −Gs+t)

−1 ◦ (Gs + Gt)[1](x), T (s, t) =
ζ(s)ζ(t)

ζ(s+ t)
,

which leads to the expression of L̂
[m]
k (s).

In the D-case, with the expression of Dk(s, u) given in (36), one gets∑
i≥m

[ui]Z(s, u) =
∑
i≥m

[ui]
∑
n≥1

ud(n)

ns
=
∑
i≥m

∑
n

d(n)=i

1

ns
=

∑
n

d(n)≥m

1

ns
=
∑
n≥em

1

ns
.

which yields to the expression of D̂
[m]
k (s).

Taking the derivative with respect to u, we obtain the following cumulative generating
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functions. In the D–case, one gets

D̂k(s) = ζ(s)`
ζ̂ ′(ks)

ζ(ks)
, where ζ̂ ′(s) =

∂Z

∂u
(s, u)

∣∣∣
u=1

=
∑
n≥1

d(n)

ns
. (38)

In the L-case, the equality

L̂k(s) = ζ(s)`
T̂ (s, ks)

T (s, ks)
(39)

involves the Dirichlet series T̂ (s, t) defined as

2T̂ (s, t) :=
∂T

∂u
(s, t, u)

∣∣∣
u=1

=
[
Gs+t ◦ (I −Gs+t)

−1 + I
]
◦ (I−Gs+t)

−1 ◦ (Gs + Gt)[1](0)

= (I −Gs+t)
−2 ◦ (Gs + Gt)[1](0).

When we divide by T (s, t), the function ϕs,t defined in (26) occurs in a natural way. 2

7.3. First properties of the cumulative generating functions.

We claim that the integer case is similar to the polynomial case. It is perhaps not
completely clear that the functions

Ak,m(s) := Gm−1
(k+1)s[ϕks,s](0), Ak,m(s) =

ζem(ks)

ζ(ks)
(40)

satisfy the same properties as their polynomial analogs. We prove that this is actually
the case in Proposition 25. Let us first describe in an informal way their main properties.

The functions Ak,m(s) defined in (40) satisfy the following, for any phase of index k ∈
[1..`− 1].

(a) They are analytic on a half plane <s > 1− δ0.
(b) Near the real axis, the function Ak,m(s) resembles an m-th power of a function

λk(s); at s = 1, one has λk(1) = 1 for k = 1 and λk(1) < 1 for k ≥ 2.
(c) In a vertical strip |<s−1| < δ0, the function ζ(s)` ·Ak,m(s) is of polynomial growth

for |=s| → ∞.
This last property, which will be made precise later, is specific to the study of Dirichlet

series.

8. Analytic study in the number case.

8.1. Main principles for probabilistic analysis.

We have obtained in Proposition 17 explicit expressions for the cumulative generating
functions. We have now to “extract” coefficients of these Dirichlet series for obtaining
the proofs of Theorems 13 and 14. However, such an extraction is more difficult for a
Dirichlet generating function: it is (very often) only possible to study partial sums of
coefficients of the series F , namely

Φ(N)[F (s)] :=
∑
p<N

[p−s]F (s),

Ψ(n)[F (s)] :=
∑

en≤p<en+1

[p−s]F (s) = Φ[en+1](F )− Φ[en](F ). (41)
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We are mainly interested in the second sum Ψ(n)[F (s)], as it deals with integers p for

which d(p) = n, which is useful when we deal with the set Ωn of inputs with size n. Then,

the mean value of a cost C on Ωn is obtained from the cumulative generating function Ĉ,

and its distribution is studied via the generating function Ĉ [m], thanks to the relations

En[C] =
Ψ(n)[Ĉ(s)]

Ψ(n)[F (s)]
, Pn[C ≥ m] =

Ψ(n)[Ĉ [m](s)]

Ψ(n)[F (s)]
. (42)

As previously, singularity analysis performs a transfer between the behavior of a Dirichlet

generating function, viewed as a function of the complex variable s, near its dominant

singularity (here, the singularity with the largest real part), and the asymptotic behavior

of its coefficients. The position and the nature of the dominant singularity play here also

a fundamental role.

This transfer is more difficult for Dirichlet series. As previously (in Proposition 11),

the basic tool is the Cauchy formula, but, here, the circles centered at 0 are replaced by

vertical lines, which are not compact. This is why Property (c) of Section 7.3 is essential

in this case, to ensure integrals over the vertical lines to be convergent. We need the

analog of Proposition 11, and we have now to deal with the Perron formula, as it was

already the case for previous distributional analyses performed in the integer case (see

(Baladi and Vallée, 2005), for instance). As we will see in the version of the Landau

Theorem stated as Theorem 26, the Perron formula provides precise remainder terms as

soon as the Dirichlet series of interest possesses a vertical strip on the left of the vertical

line <s = 1, where s = 1 is its only pole (possibly of multiple order) and if it is of

polynomial growth for |=s| → ∞.

We now explain the plan of the remaining of this section. Its goal is to provide a proof

of Theorems 13 and 14. We begin by providing two propositions, namely Propositions 20

and 22 which are the analogs of Propositions 9 and 11. These propositions are themselves

two particular cases of the Landau Theorem (Theorem 26) proven in Section 9. As in

the analysis in the polynomial case, when applied to the generating functions of interest,

this will lead to the two main theorems, namely Theorems 13 and 14. In the following

sections, we describe the analytical properties that are fulfilled by the main objects which

intervene in the analysis: the transfer operator Gs (in Proposition 23) and the ζ series

together with its variants (in Proposition 24). Finally, we explain in Proposition 25 why

these properties entail the hypotheses needed for applying Propositions 20 and 22. And,

as already said, applying these propositions yields our two main theorems.

8.2. A general framework for average-case analysis.

In our framework, where the bivariate generating functions admit the common form

described in (37), the following proposition provides an analog to Proposition 9.

Proposition 20. [Expectations.] Consider a cost C defined on N`+, whose bivariate

Dirichlet generating function is of the form

C(s, u) = ζ(s)`
A(s, u)

A(s, 1)
.

36



(a) Then, the expectation En[C] satisfies

En[C] =
Ψ(n)[ζ(s)`B(s)]

Ψ(n)[ζ(s)`]
,

where Ψ(n) is defined in (41) and B(s) = Â(s)/A(s) is the quotient between the

cumulative generating function Â(s) related to A(s, u), and A(s) = A(s, 1).

(b) Consider three real parameters δ0 ∈]0, 1[, τ0 > 0, ξ ≥ 0, together with an integer

` ≥ 2, and a constant M , and assume that the following holds for the quotient

B(s) = Â(s)/A(s).

(i) On the half-plane {<s > 1− δ0}, there are two possibilities for this quotient,

(ia) either B(s) is meromorphic with a unique simple pole at s = 1,

(ib) or B(s) is analytic.

(ii) In all the cases, and in the part of the vertical strip {s = σ + iτ | |σ − 1| ≤
δ, |τ | ≥ τ0} with δ < δ0, B(s) satisfies

|ζ(s)`B(s)| ≤M · |τ |ξ.

Then, the following estimates hold for the expectation En[C] of C:

in the case (ia), En[C] = Res (B(s); s = 1)
n

`
+O(1) +O

(
1

n

)
;

in the case (ib), En[C] = B(1) +O

(
1

n

)
.

As in the polynomial study, Proposition 20 will be proven with the help of the following

proposition, whose proof is found in Section 9. It is mainly based on a theorem due to

Landau (1924), for which we provide in Section 9 a version due to Mathieu Roux in his

thesis (Roux, 2011).

Proposition 21. [Coefficients extraction.] Consider three real parameters δ0 ∈]0, 1[,

τ0 > 0, ξ ≥ 0, together with an integer ` ≥ 2, and a bound M . Consider a Dirichlet

series C(s) having nonnegative coefficients, and assume the following.

(i) On the half-plane {<s > 1− δ0}, C(s) is meromorphic with a unique pole at s = 1

of order j ≥ 2, and C(s) satisfies

lim
s→1

(s− 1)jC(s) = a2.

(ii) On the part of the vertical strip {s = σ+ iτ | |σ− 1| ≤ δ, |τ | ≥ τ0} with δ < δ0, one

has

|C(s)| ≤M · |τ |ξ.
Then, the following estimate holds for the sum of coefficients Ψ(n)[C(s)], defined in (41),

for some constant a,

Ψ(n)[C(s)] = a(e− 1)en
n`−1

(`− 1)!

(
1 +O

(
1

n

))
.
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8.3. A general framework for distributional analysis.

In our framework, where the bivariate generating functions admit the common form
described in (37), the following proposition provides an analog to Proposition 11.

Proposition 22. [Coefficients extraction and distribution.] Consider a cost C defined
on N`+, whose bivariate Dirichlet generating function is of the form

C(s, u) = ζ(s)`
A(s, u)

A(s, 1)
.

(a) Then, the probability of the event Pn[C ≥ m] satisfies

Pn[C ≥ m] =
Ψ(n)[ζ(s)`Am(s)]

Ψ(n)[ζ(s)`])
with Am(s) =

1

A(s, 1)

∑
i≥m

[ui]A(s, u),

where Ψ(n) is defined in (41).
(b) Consider three real parameters δ0 ∈]0, 1[, τ0 > 0, and ξ ≥ 0, together with an

integer ` ≥ 2, and two bounds M1 and M2, and assume that the following for A(s)
and the sequence Am(s).
(i) On the half-plane {<s > 1− δ0}, for any m ≥ 1, the series Am(s) is analytic,

and there are two cases for A(s) := A(s, 1), namely
(ia) either A(s) is meromorphic with a unique simple pole at s = 1,
(ib) or A(s) is analytic.

(ii) On the rectangle Rδ := {s = σ+ iτ | |σ− 1| ≤ δ, |τ | ≤ τ0}, with δ < δ0, Am(s)
resembles an m–th power function, and admits the following decomposition

Am(s) = λ(s)m [c(s) +Rm(s)] , with c(s) 6= 0, |Rm(s)| ≤M1 · θm

which involves analytic functions c(s), λ(s) and Rm(s). Moreover, the restric-
tion of λ to the horizontal segment [1 − δ, 1 + δ] is positive, decreasing, and
the restriction of |λ| to each vertical segment attains its maximum on the real
axis. We let

a := λ(1) > 0, b = −λ′(1) > 0.

(iii) On the part of the vertical strip {s = σ + iτ | |σ − 1| ≤ δ, |τ | ≥ τ0}, one has

|ζ(s)` ·Am(s)| ≤M2 · λ(1− δ)m · |τ |ξ.

Then, the following estimates hold for Pn[C ≥ m], for any pair (m,n) whose ratio
m/n belongs to the interval [0, a/b].

In the case (ia), the equalities Am(1) = 1 and λ(1) = 1 hold, and

Pn[C ≥ m] =
(

1− a

b

m

n

)`−1

+O

(
1

nα

)
;

In the case (ib), the inequality λ(1) < 1 holds and

Pn[C ≥ m] = Am(1) +O

(
log n

n

)
.

Here, in both cases, the hidden constants in the O–terms are uniform when the
ratio m/n belongs to [0, a/b], and, as in Proposition 11, the real α satisfies α =
min(1, (`− 1)2/(2`− 1)).
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The proof of this proposition is based on a theorem due to Landau (1924), the same
as for Proposition 20. The proof of this result, due to Mathieu Roux (Roux, 2011), is
given in Section 9.

8.4. Analytical properties of the transfer operator Gs.

We now describe the main properties of the transfer operator Gs and then, in the
next section, of various versions of the Riemann ζ function.

The functional space C1([0, 1]) of functions of class C1 on the interval [0, 1] is endowed
with the || · ||1,1 norm defined as

||f ||1,1 = sup{|f(x)| ; x ∈ [0, 1]}+ sup{|f ′(x)| ; x ∈ [0, 1]} ,

but is proves convenient to consider a family of norms || · ||1,τ defined as

||f ||1,τ = sup{|f(x)| ; x ∈ [0, 1]}+
1

|τ |
sup{|f ′(x)| ; x ∈ [0, 1]}.

For <s > 1/2, the operator G2s satisfies the following (see (Baladi and Vallée, 2005)
for more precisions).

Proposition 23. [Transfer operator.] For <s > 1/2, the operator G2s acts on C1([0, 1])
and defines an analytic functions of s. For <s > ρ0, with ρ0 < 1/2, the operator (I −
G2s)

−1 is meromorphic with a unique pole at s = 1/2, and the operator (1/ζ(s))(I −
G2s)

−1 is analytic. For any closed interval [σ1, σ2] ⊂]1/2,+∞[, there exist τ0 > 0,K1 >
0,K2 > 0, θ < 1, ξ ≥ 0 (with ξ = 0 when σ1 > 1 and ξ = 1/2 otherwise), such that the
following holds.

(i) On the rectangle [σ1, σ2]× {|τ | ≤ τ0}, the operator G2s admits a unique dominant
eigenvalue λ(s) (positive for real s), with a spectral gap, and there is a spectral
decomposition of the form

Gm
2s[f ] = λ(s)mPs[f ] + Rm

s [f ] for m ≥ 1

which involves the projector Ps over the dominant eigenspace and the operator
Rs relative to the remainder of the spectrum. The spectral radius of Rs is strictly
smaller than |λ(s)|: there exist K1 and θ < 1 such that ||Rm

s ||1,1 ≤ K1 θ
m |λ(s)|m.

Moreover, the restriction of λ to the horizontal segment [σ0−δ0, σ0 +δ0] is positive,
log-convex and decreasing, and the restriction of |λ| to each vertical segment attains
its maximum on the real axis. Finally,

sup{|λ(s)| | s ∈ Rδ} = λ(σ1).

(ii) On the part of the vertical strip defined by [σ1, σ2]× {|τ | > τ0}, the norm (1, τ) of
the operators Gs and (I −Gs)

−1 satisfy

||Gm
2s||1,τ ≤ K2 |τ |ξ · λ(σ1)m, ||(I −G2s)

−1||1,τ ≤ K2 |τ |ξ.

8.5. Analytical properties of the zeta functions.

This study involves several types of functions ζ (introduced in Section 6.3). The next
proposition summarizes some important results in our context. See (Edwards, 2001) and
(Tenenbaum, 1990) for more precisions.
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Proposition 24. [Zeta functions.] For <s > 1/2, the Riemann ζ function ζ, the Hurwitz
zeta function ζ(s, x+ 1) and the truncated ζ function ζM define meromorphic functions
of s, and the quotients

ζ(s, 1 + x)

ζ(s)
,

ζM (s)

ζ(s)

define analytic functions of s. For any closed interval [σ1, σ2] ⊂]1/2,+∞[, there exist
τ0 > 0,K1 > 0,K2 > 0, θ < 1, ξ ≥ 0 (with ξ = 0 when σ1 > 1 and ξ = 1/2 otherwise),
such that the following holds.

(i) On the rectangle [σ1, σ2] × {|τ | ≤ τ0}, the function ζem(s)/ζ(s) resembles a large
m-th power

ζem(s)

ζ(s)
= e(1−s)m (1 +Rm(s)) with Rm(s) ≤ K1e

−m.

(ii) On the part of the vertical strip defined by [σ1, σ2]× {|τ | > τ0}, the zeta functions
satisfy

|ζ(s| ≤ K2 |τ |ξ, ||ζ(s, 1 + x)||1,τ ≤ K2 |τ |ξ, |ζM (s)| ≤ K2 |τ |ξ ·Mσ1−1.

Moreover, for σ1 > 1, the function 1/ζ(s) is uniformly bounded there.

8.6. Final step for the probabilistic analysis.

We now prove Theorems 13 and 14. This will conclude the analysis in the integer case.

Proposition 25. The following holds for the two bivariate generating functions Lk(s, u)
and Dk(s, u).

(a) They satisfy the hypotheses of Proposition 20. When Proposition 20 is applied to
these bivariate generating functions, this entails Theorem 13.

(b) They satisfy the hypotheses of Proposition 22. When Proposition 22 is applied to
these bivariate generating functions, this entails Theorem 14.

Proof. We first remark that, for any index k, the function ϕks,s, defined as

ζ((k + 1)s) · (I −G2s)
−1

ζ(ks)

[
1 +

ζ(ks, 1 + x)

ζ(s)

]
,

is always analytic in a vertical strip |<s−1| ≤ δ0, for any value of k. Now, in the proof of
each assertion, there are two main cases, according to the index k of the phase. The case
k ≥ 2 is easier to deal with, and we thus begin with it, in the proof of each assertion.

Assertion (a) The cumulative generating functions satisfy

L̂k(s)

ζ(s)`
= (I −G(k+1)s)

−1[ϕks,s](0) ,
D̂k(s)

ζ(s)`
=
ζ̂ ′(ks)

ζ(ks)
.

Case k ≥ 2. In this case, in a vertical strip |<s − 1| ≤ δ0, the two previous quotients
define analytic functions of constant growth (ξ = 0). Moreover, the function ζ(s)` is
meromorphic in this strip, with a unique pole at s = 1, of order `, and a polynomial
growth with an exponent ξ ≤ `/2. This entails that, in a vertical strip |<s− 1| ≤ δ0, the

functions L̂k(s) and D̂k(s) are meromorphic, with a unique pole at s = 1 of order `.
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Case k = 1. We write the two functions L̂k(s) and D̂k(s) in a different way when we
focus on singularities or on polynomial growth.

We first consider analyticity. In the decomposition of the quotient function L̂k/ζ(s)`

as (I −G2s)
−1[ϕs,s](0), the second factor is analytic in a vertical strip |<s − 1| ≤ δ0,

whereas the first factor is the quasi-inverse (I −G2s)
−1 that has a unique pole of order

1 at s = 1 there. Then, the series L̂k(s) is meromorphic in a vertical strip |<s− 1| ≤ δ0,
with a unique pole of order `+ 1 at s = 1.
The series D̂k(s) decomposes as ζ(s)`−1 · ζ̂ ′(s) and the series ζ̂ ′(s) is meromorphic in a

vertical strip |<s− 1| ≤ δ0 with a unique pole of order 2 at s = 1. Then, the series L̂k(s)
is meromorphic in a vertical strip |<s − 1| ≤ δ0, with a unique pole of order ` + 1 at
s = 1.

We now consider polynomial growth. The series L̂k(s) and D̂k(s) decompose as

D̂k(s) = ζ(s)`−1 · ζ̂ ′(s) L̂k(s) = ζ(s)`−2 · ζ(2s) · (I −G2s)
−2[ζ(s, 1 + x)](0),

each factor being of polynomial growth in a vertical strip |<s− 1| ≤ δ0 (for |=s| → ∞).

Assertion (b) The cumulative generating functions satisfy

L̂
[m]
k (s)

ζ(s)`
= Gm−1

(k+1)s[ϕks,s](0),
D̂

[m]
k (s)

ζ(s)`
=
ζem(ks)

ζ(ks)
,

and these quotients, denoted in a generic way as Ak,m(s), are always analytic (for any
m and any k) in a vertical strip |<s− 1| ≤ δ0. The general function λk(s) of Proposition
22 satisfies

λk(s) := λ
(s

2
(k + 1)

)
[L-case], λk(s) = exp[1− ks] [D-case].

Case k ≥ 2. At s = 1, the real numbers λk(1) are strictly less than 1. Moreover, all the
factors in the following decompositions

L̂
[m]
k (s) = ζ(s)`−1 · ζ((k + 1)s)

ζ(ks)
Gm−1

(k+1)s ◦ (I −G(k+1)s)
−1[ζ(s, 1 + x) + ζ(ks, 1 + x)],

D̂
[m]
k (s) = ζ(s)` · ζe

m(ks)

ζ(ks)

exhibit polynomial growth (for the first factor) and bounded growth for the other factors.

Case k = 1. The real numbers λk(1) are equal to 1. Moreover the equalities A1,m(1) = 1
hold for any integer m. One has indeed in the L–case,

A1,m(1) = Gm−1
2 [ϕ1,1](0), with ϕ1,1(x) =

1

1 + x
.

As 1/(1+x) (proportional to the Gauss density) is invariant under the action of G2, this
entails the equalities A1,m(s) = 1 in the L-case. In the D-case, the equalities A1,m(1) = 1
also hold due to the equality ζ(1) = +∞.
All the factors in the following decompositions

L̂
[m]
k (s) = ζ(s)`−2 · ζ(2s) ·Gm−1

2s ◦ (I −G2s)
−1[ζ(s, 1 + x) + ζ(ks, 1 + x)],

D̂
[m]
k (s) = ζ(s)`−1 · ζem(s)
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exhibit polynomial growth (for the first factor) and bounded growth for the other fac-
tors. 2

9. A precise version of the Landau Theorem.

9.1. Statement of the Landau Theorem.

The proof we provide here is mainly based on the article (Landau, 1924), with a
precise re-writting due to Roux in his thesis (Roux, 2011). We start with this version
that we adapt to our context. We wish to apply the Landau Theorem to a sequence of
functions that will share the same geometry defined by fixed parameters, namely the
parameters σ0, δ0, τ0, ξ, ` introduced in the following theorem. Inside this geometry, there
is a Dirichlet series (the series Z(s) of the following theorem) that will vary, and that
brings its own parameters, namely the functions U and V which define its behavior at
the pole s = σ0, and the bounds M(δ) which describe its behavior on vertical lines close
to the singulatity.

Theorem 26. Consider five real parameters σ0, δ0, τ0, ρ0, ξ with σ0 > δ0 > 0, ρ0 < δ0,
τ0 > 0 and ξ ≥ 0 and an integer ` ≥ 2. We denote 8 by k the integer bξc+ 2.

Consider a Dirichlet series

Z(s) =
∑
n≥1

an
ns

with nonnegative coefficients an that satisfies the following hypotheses.

(i) The series Z(s) is meromorphic on the half-plane {<s ≥ σ0 − δ0} and admits a
unique pole at s = σ0 of order `. We let denote by U(s) the function U(s) :=
Z(s)(s−σ0)` and by V (s) := log(U(s)/s). Let M0 := sup{|V (s)| s.t. |s−σ0| ≤ ρ0}.

(ii) For any δ ∈]0, δ0[, there exists a real number M(δ) such that

(iia) on the domain {s = σ+ iτ | |τ | > τ0, |σ− σ0| ≤ δ}, the function Z(s) satisfies
|Z(s)| ≤M(δ)|τ |ξ;

(iib) on the segment {s = σ + iτ | σ = σ0 − δ, |τ | ≤ τ0}, the function Z(s) satisfies
|(s− σ0)`Z(s)| ≤M(δ).

Then, for any δ ∈]0, δ0[ and, for any pair (y, t) with t, y →∞ and y/t→ 0, the following
asymptotic estimates hold:

N0(t) :=
∑
n≤t

an = Res

(
Z(s)

s
ts; s = σ0

)
+O

(y
t

)
tσ0U(σ0)

(
log t+M0

)`−1

+O(M(δ)) tσ0−δ

((
t

y

)k
+

1

δ`

)(
1 +O

(y
t

))
,

8 This notation is only for this section. Outside of Section 9, k stands for the index of a phase in the

multiple gcd algorithm.
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where the hidden constants in the O-terms only depend on the fixed parameters σ0, δ0,
τ0, ξ, and `. They do not depend on the own parameters of Z(s), namely the functions
U, V and the bounds M(δ). They neither depend on the variable parameters (t, y, δ).

9.2. Perron formula of order k.

We are interested in the study of the simple sum N0(t) (of order 0) of the coefficients
an for indices n ≤ t. But, there are other sums which are useful, namely the sums of
order k.

Definition 27. For any integer k and a real t ∈ R, the sum of order k of the coefficients
of the series Z(s) is defined as

Nk(t) :=
1

k!

∑
n≤t

an(t− n)k.

For any k ≥ 2 and any t ∈ R, the derivative of Nk equals Nk−1 and the relation
remains true for k = 1 and t ∈ R \ N.

We now recall the Perron formula of order k that relates the sum of order k to an integral
on a vertical line of the series Z(s)/(s(s+ 1) . . . (s+ k)).

Proposition 28. [Perron formula of order k.] For any integer k ∈ N, any real t > 0 and
any c > σ0, the sum Nk(t) admits an alternative formula as an integral on a vertical line

Nk(t) =
1

2iπ

∫ c+i∞

c−i∞

Z(s)ts+k

s(s+ 1) . . . (s+ k)
ds . (43)

When s = σ + iτ , Hypothesis (iia) of Theorem 26 entails the following estimate, for
|τ | large enough,

Z(s)

s(s+ 1) . . . (s+ k)
= O(|τ |ξ−k−1),

which shows that the integral in (43) is absolutely convergent as soon as the inequality
k > ξ holds.
We wish to obtain an asymptotic estimate for the sum N0(t) of order 0. The idea is to
use the Perron formula of order k, obtain an estimate for Nk(t), and then relate Nk(t)
with N0(t).

9.3. Operators ∆y and Iy.

This will be done via the operators ∆y and Iy that we now introduce. The operator
∆y is a finite-difference operator and Iy is an integral operator.

Definition 29. For y ∈ R, the operators ∆y and Iy are defined as

∆y[f ] : t→ f(t+ y)− f(t), Iy[f ] : t→
∫ t+y

t

f(u)du.

We let denote as usual the k–th powers of these operators as ∆k
y and Iky , respectively,

and we now describe the main properties of these operators.
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Proposition 30. The following holds.
(a) The two operators satisfy ∆y[f ](t) = Iy[f ′](t).
(b) For a Dirichlet series with nonnegative coefficients, the following inequality holds

for any k ≥ 1:
1

yk
∆k
y [Nk](t− ky) ≤ N0(t) ≤ 1

yk
∆k
y [Nk](t).

(c) Consider 0 < y ≤ t and k > ξ. Then, there is an integral form for ∆k
y [Nk](t),

namely

∆k
y [Nk](t) =

1

2iπ

∫ c+i∞

c−i∞

Z(s)

s
Iky [ts](t) ds.

(d) [Far from the real axis.] There exists a positive real number M+ = M+(k) that
depends only on τ0, σ0, δ0 and k such that, for any s = σ + iτ in the vertical strip
{s = σ + iτ | |σ − σ0| < δ0, |τ | ≥ τ0} and any y, t with 0 < y ≤ t, the function
Iky [ts](t) satisfies

|Iky [ts](t)| ≤M+(k) tσ+k|τ |−k.
(e) [Near the real axis.] There exists a positive real number M− = M−(k) that depends

only on τ0, σ0, δ0 and k, such that, for any s in the rectangle {s = σ+iτ | |σ−σ0| ≤
δ0, |τ | ≤ τ0}, and for any real numbers y, t with 0 < y ≤ t, the function Iky [ts](t)
satisfies

Iky [ts](t) = ykts (1 + ε(s)) , with |ε(s)| ≤M−(k)
y

t
.

Remark. Nonnegativity of coefficients an is only assumed in Assertion (b). It is not
needed in the other assertions.

Before proving Proposition 30, we explain how it will be applied to get the estimate
of N0(t) stated in Theorem 26. Assertion (b) describes how to replace the study of the
sum N0 of order 0 by the function t 7→ ∆k

y [Nk](t)] which involves the sum Nk of order k.

Then Assertion (c) provides an expression of ∆k
y [Nk](t) as an integral “à la Perron” which

resembles the classical integral (43) where the function Iky [ts] replaces the function ts. As
we wish to return to the initial function ts, Assertions (d) and (e) provide comparisons
between both functions, far from the real axis for Assertion (d), and near the real axis
for Assertion (e).

Proof.
(a) Clear.
(b) Applying (a), with an easy induction on the integer k, shows that ∆k

y [Nk](t) can be
expressed as a linear combination of the points Nk(t), Nk(t+ y),. . . , Nk(t+ ky), namely

∆k
y [Nk](t) =

∫ t+y

t

dt1

∫ t1+y

t1

dt2 . . .

∫ tk−1+y

tk−1

N0(tk)dtk.

When the coefficients an of the Dirichlet series are nonnegative, the function N0(t) is
nondecreasing, and the previous integral expression provides an upper bound and a lower
bound.

(c) [Obtained as Corollary 16.6 in (Roux, 2011).] The expression is obtained when
applying the operator ∆k

y to the two sides of the Perron formula (43), and using the
equality

(s+ 1) . . . (s+ k) · Ik[ts] = ∆k
y [ts+k].
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Statements (d) and (e) are not proven here. They are stated and proven as Lemmas
16.8.1 and 16.8.2 in (Roux, 2011), respectively. 2

9.4. Principles of the proof.

We then wish to compute the following integral, with c > σ0:

1

2iπ

∫ c+i∞

c−i∞

Z(s)

s
Iky [ts](t) ds . (44)

Changing the contour. We consider the rectangle formed with the two vertical lines
<s = c (with c > σ0) and Cδ := {<s = σ0 − δ} (with δ ∈]0, δ0]) together with the two
horizontal lines =s = ±M . Denote by DM its frontier with a positive orientation. Inside
this rectangle, the function s 7→ (Z(s)/s)·Iky [ts](t) is meromorphic and admits the unique
pole s = σ0. Then, the Residue Theorem applies and entails the equality

1

2iπ

∫
DM

Z(s)

s
Iky [ts](t)ds = Res

(
Z(s)

s
Iky [ts](t); s = σ0

)
.

When now M tends to ∞, the integrals on the two horizontal lines tend to 0, due to
Assertion (d) of Proposition 30 and Hypothesis (iia) of Theorem 26. There remain the
integrals on the vertical lines, and we then obtain the equality

1

2iπ

∫ c+i∞

c−i∞

Z(s)

s
Iky [ts](t) ds = Res

(
Z(s)

s
Iky [ts](t); s = σ0

)
+

1

2iπ

∫
Cδ

Z(s)

s
Iky [ts](t) ds .

Getting the estimate for N0(t). We expect that

Res

(
Z(s)

s
ts; s = σ0

)
will be the main term in the final estimate. Then, there will be four remainder terms.

(i) The remainder term R1(t, y) which is created by the difference between the two
residues.

(ii) Two remainder terms which arise in the estimate of the integral on the vertical
line <s = σ0 − δ, the first one R2(t, y, δ) near the real axis, and the second one
R3(t, y, δ) far from the real axis.

(iii) The last remainder term R4(t, y) which arises when applying Assertion (b) of Propo-
sition 30.

9.5. Difference between residues.

Lemma 31. Consider a function Z(s) which fulfills Hypothesis (i) of Theorem 26, and
a pair (t, y) where y > 0 and t > 0 tends to ∞, with a ratio y/t→ 0.

(a) Consider an analytic function ε(s) defined on a neighborhood of s = σ0 which
satisfies ε(s) = O(y/t). Then∣∣∣∣Res

[
Z(s)

s
ts[1 + ε(s)] ; s = σ0

]
− Res

[
Z(s)

s
ts ; s = σ0

]∣∣∣∣
≤ K

(y
t

)
tσ0U(σ0)

(
log t+M0

)`−1
,
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where the constant K only depends on the fixed parameters.

(b) In particular, the remainder R1(t, y) defined as

R1(t, y) :=
1

yk
Res

[
Z(s)

s
Iky [ts](t) ; s = σ0

]
− Res

[
Z(s)

s
ts ; s = σ0

]
satisfies

|R1(t, y)| ≤ K
(y
t

)
tσ0U(σ0)

(
log t+M0

)`−1
,

where the constant K only depends on the fixed parameters.

Proof. (a) Let

U(s) := (s− σ0)`Z(s), V (s) := log

[
U(s)

s

]
, W (s) = s log t+ V (s) .

The difference between the two residues is

Res

[
Z(s)

s
tsε(s) ; s = σ0

]
=

(−1)`−1

(`− 1)!

d`−1

ds`−1

(
exp[W (s)] · ε(s)

)
s=σ0

.

With Cauchy’s theorem, for k ≤ `, all the derivatives |ε(k)(σ0)| are O(y/t), and all the
derivatives |V (k)(σ0)| are O(M0). Then the first derivative of W at σ0 is O(log t+M0),
while the other derivatives of W at σ0 are O(M0). This shows that the derivative of
order k of exp[W (s)] at s = σ0 is exp[W (σ0)] · O(log t + M0)k. Finally, the residue can
be bounded as

Res

[
Z(s)

s
tsε(s) ; s = σ0

]
≤ K

(y
t

)
tσ0U(σ0)

(
log t+M0

)`−1
.

(b) With Assertion (e) of Proposition 30, there exist an analytic function s 7→ ε(s)
and a constant M− such that

Iky [ts](t) = yk ts [1 + ε(s)] with |ε(s)| ≤M−
y

t

where M− is a positive constant that only depends on the fixed parameters. Then (a)
may be applied. 2

9.6. Estimate of the integral.

We now describe the estimates of the integral over the left vertical line <s = σ0 − δ.
We consider two parts in this integral, the integral “far from the real axis”, taken over
the union C+

δ defined as {s = σ + iτ | <s = σ0 − δ, |τ | ≥ τ0}, and the integral “near the
real axis”, taken over the segment C−δ := {s+ iτ | <s = σ0 − δ, |τ | ≤ τ0}.

Far from the real axis.

Lemma 32. With the notations of Theorem 26, one has

R2(t, y, δ) =
1

yk

∣∣∣∣∣
∫
C+
δ

Z(s)

s
Iky [ts](t)ds

∣∣∣∣∣ = O(M(δ))

(
t

y

)k
tσ0−δ,

with a O-term that only depends on the fixed parameters.
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Proof. Hypothesis (ii) of Theorem 26 together with Assertion (d) of Proposition 30 entail
the existence of two constants M(δ) and M+ for which the following inequality holds∣∣∣∣∣

∫
C+
δ

Z(s)

s
Iky [ts](t) ds

∣∣∣∣∣ ≤ 2

∫ +∞

τ0

M(δ)

τ
τ ξM+

tσ0−δ+k

τk
dτ.

The integral is convergent as soon as the integer k is strictly larger than ξ. We choose
k = ξ + 2. In this case, one has

1

yk

∣∣∣∣∣
∫
C+
δ

Z(s)

s
Iky [ts](t) ds

∣∣∣∣∣ ≤ KM(δ)

(
t

y

)k
tσ0−δ

where the constant K only depends on the fixed parameters. 2

Near the real axis.

Lemma 33. With the notations of Theorem 26, one has

R3(t, y, δ) :=
1

yk

∣∣∣∣∣
∫
C−
δ

Z(s)

s
Iky [ts](t)ds

∣∣∣∣∣ = O

(
M(δ)

δ`

)
tσ0−δ,

where the constant hidden in the O–term only depends on the fixed parameters.

Proof. According to Assertion (e) of Proposition 30, there exists a real M+ that depends
only on the fixed parameters such that

|Iky [ts](t)| ≤M+ y
k tσ0−δ for s ∈ C−δ .

With Hypothesis (ii) of Theorem 26, the following bound holds∣∣∣∣∣
∫
C−
δ

Z(s)

s
Iky [ts](t) ds

∣∣∣∣∣ ≤ 2τ0
1

|σ0 − δ0|
M(δ)

δ`
M+ y

k tσ0−δ

and
1

yk

∣∣∣∣∣
∫
C−
δ

Z(s)

s
Iky [ts](t)ds

∣∣∣∣∣ ≤ K1
M(δ)

δ`
tσ0−δ,

where K1 only depends on the fixed parameters. 2

9.7. Return from Nk(t) to Nk(t− ky).

Assertions (b) and (c) of Proposition 30 exhibit an upper bound as well as a lower
bound. The upper bound is an integral “à la Perron” which involves Iky [ts](t), and we
have studied it. The lower bound is a similar integral “à la Perron” which now involves
Iky [(t − ky)s](t − ky) instead of Iky [ts](t). So, we have to study what happens in our
previous bounds when we “replace” t by t− ky. We consider the case when t and y tend
to ∞, with a ratio y/t which tends to 0. We first observe the change which occurs in the
bounds given in Assertions (d) and (e). For the bound of Assertion (d)

|Iky [(t− ky)s](t− ky)| ≤M4(t− ky)σ+k|τ |−k ≤M4t
σ+k|τ |−k

(
1− ky

t

)σ+k

. (45)

And, for the bound in Assertion (e), one gets

Iky [(t− ky)s](t− ky) = yk(t− ky)s (1 + ε1(s)) , with |ε1(s)| ≤M5
y

t− ky
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and thus,

Iky [(t− ky)s](t− ky) = ykts
(

1− ky
t

)s
(1 + ε1(s)) , (46)

with

|ε1(s)| ≤M5
y

t

1

1− k(y/t)
.

Then, all the remainder terms R1, R2 et R3 remain of the same order when t is replaced

by t− ky and, more precisely, one gets

R1(t− ky, y) = R1(t, y)
(

1 +O
(y
t

))
, (Rj(t− ky, y, δ) = Rj(t, y, δ)

(
1 +O

(y
t

))
where the constants in the O term do not depend on δ. There is also a new remainder

term which appears in the residue when t is replaced by t − ky. The function changes,

and the new residue is

ykRes

(
Z(s)

s
(t− y)s; s = σ0

)
= ykRes

(
Z(s)

s
ts
(

1− ky
t

)s
; s = σ0

)
.

We apply Lemma 31 to the function ε1(s) defined by the relation

1 + ε1(s) =
(

1− ky
t

)s
which is indeed O(y/t) when s is close to σ0. This ends the proof of Theorem 26.

We now have to apply the estimates given by the Landau Theorem to our setting. Using

the specificities of our problem, we shall obtain the proofs of Propositions 21 and 22. We

first estimate the residue, and prove that the three terms Ri(t, y, δ) are exponentially

decreasing as soon as both parameters y and δ are chosen in a convenient way,

9.8. Application to Proposition 21.

We wish to study two functions, first ζ(s)`, second the function ζ(s)`B(s), where

B(s) = Â(s)/A(s) appears in the numerator and the denominator of the expectation

En[C] in Proposition 20. We consider a general function C(s) with a unique pole of order

` at s = 1, we first study the residue, and then the remainder terms. There are now three

remainder terms. As we are interested in the estimate of the sum Ψ(n), we let t = en,

and write C(s) = (s− 1)−jB(s).

Computation of the residue. The estimate

Res

(
C(s)

s
ens; s = 1

)
= ena

nj−1

(j − 1)!

(
1 +O

(
1

n

))
is clear. Indeed, according to the arguments that have been used several times in this

paper, the residue is closely related to the value at s = 1 of the (j − 1)-th derivative of

the function exp[ns + logB(s)/s] at s = 1, which is a polynomial with respect of n, of

degree j − 1, with a dominant term as above.
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Choice for parameters y and δ. We recall that there are three terms which should give
rise to actual remainder terms, provided we find a good choice for the free parameters
(y, δ) for which these terms are proven to tend to 0. Here, we will fix δ := δ0/2 (for
instance) and now let y = enθ, and choose θ. There are two main terms R1 and R2 which
depend on y, and in fact on the ratio y/t. The condition R1(t, y) = R2(t, y, δ) entails the
following equality (where we neglect the logarithmic factors in t), namely

y

t
= t−δ

(
t

y

)k
θ − 1 = − δ0

k + 1
. (47)

Then R1(t, y) and R2(t, y, δ0) are exponentially decreasing, namely of order O
(
en(θ−1)

)
(with some polynomial factor in n) and the third remainder term R3(t, y, δ0) is also
exponentially decreasing.

9.9. Application to Proposition 22.

We wish to study the sequence S[m](s) = ζ(s)`Am(s) which occurs in the numerator
of the probability Pn[C ≥ m], and apply the Landau Theorem. As in the proof of Propo-
sition 11, we first compute the residue which will give rise to the main term, and then,
the three remainder terms. In the third step, we finally choose the width δ to conclude.
As we are interested in the estimate of the sum Ψ(n), we let t = en.

Computation of the residue.

Lemma 34. With the hypotheses of Proposition 22, and for any pair (n,m) whose ratio
m/n belongs to the interval [0, c0] with c0 < a/b, one has, when n→∞

Res

(
S[m](s)

s
ens; s = 1

)
= enAm(1)

n`−1

(`− 1)!

(
1− m

n

b

a

)`−1(
1 +O

(
1

n

))
.

Proof. The proof is similar to the proof of Proposition 11. The residue is closely related
to the value at s = 1 of the (`− 1)-th derivative of the function exp[W (s)], with

W (s) = ns+ logAm(s) + V (s),

where V (s) is related to a fixed function which involves the ζ function. As Am(s) resem-
bles an m-th power, one has

logAm(s) = m log λ(s) + log c(s) + log(1 +Rm(s)),

where c(s), log(1 +Rm(s)) and all their derivatives are uniformy bounded, with respect
to pairs (m,n). Then W (s) is written as

W (s) = n

(
s+

m

n
log λ(s) +

1

n
W1(s)

)
, (48)

where W1(s) is an analytic function which remains bounded (with its derivatives) at
s = 1. Then, with the same arguments already used in the proof of Proposition 11,

d`−1

ds`−1
exp[W (s)]s=1 = exp[W (1)]

(
W ′(1)

)`−1
[
1 +O

(
1

n

)]
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provided that the derivative W ′(1) is positive. As this derivative satisfies, with a := λ(1),
b := −λ′(1),

1

n
W ′(1) =

(
1− m

n

b

a

)
+O

(
1

n

)
,

this arises for any pair (m,n) whose ratiom/n belongs to the interval [0, c0] with c0 < a/b.
In these conditions, one obtains the expected expression of the residue. 2

Choice of the parameters y and δ. We now estimate more precisely, for each series S[m](s),
each of the three terms R1(t, y), R2(t, y, δ) and R3(t, y, δ), and we prove that there exists
a choice of (y, δ) which gives rise to actual remainder terms, with a speed of convergence
being uniform with respect to m.

Lemma 35. For any c0 < a/b, there exists a choice of parameters θ ∈]0, 1[, and δ < δ0
for which the three terms Rj(y, t, δ) (for j = 1, 2, 3) satisfy, for any pair (n,m) whose
ratio m/n belongs to [0, c0],

[j = 1, 2] e−nRj(e
n, enθ, δ) = Am(1) O

(
exp

[
−n
(

1− c0
c

)2
])

[j = 3] e−nR3(en, enθ, δ) = Am(1) O

((
1− c0

c

)−`
exp

[
−n
(

1− c0
c

)2
])

,

where the constants of the O-terms do not depend on c0.

Proof. We let t = en, y = eθn. There are two main terms R1 and R2 which depend on
y, and in fact on the ratio y/t. Up to the polynomial term in n, the remainder terms
R1(en, eθn) and R2(en, eθn, δ) (in short, R1 and R2) satisfy

R1

Am(1)en
= e−n(1−θ) and

R2

Am(1)en
= exp (−nC) (49)

with

C = δ + k(θ − 1)− 1

n
log

Am(1− δ)
Am(1)

. (50)

We study the sign of C. Consider again the function

1

n
logAm(s) =

m

n
log λ(s) +

1

n

(
log(c(s) + log(1 +Rm(s))

)
.

The second term defines a function whose derivatives of order k < ` are O(1/n), while
the first term depends linearly on the ratio m/n. Then, neglecting this term of order
O(1/n), the function (1/n) logAm(s) is equal to the function (m/n) log λ(s). Using the
properties of the function λ(s) (it is decreasing), the notation a = λ(1), b = −λ′(1),
and letting d := 2 sup{|(log λ(s))′′| | [1− δ0, 1]}, we obtain a lower and an upper bound,
involving in particular the two constants c = a/b, and d, i.e.,

1

n
logAm(1) +

m

n

1

c
δ ≤ 1

n
logAm(1− δ) ≤ 1

n
logAm(1) +

m

n

1

c
δ +

m

n
dδ2.

Inserting the previous bounds in the expression of C entails that C + k(1 − θ) belongs
to the interval [B,A] with

A := δ

(
1− m

n

1

c

)
, B := δ

(
1− m

n

1

c
− m

n
dδ

)
.
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We decide to choose θ as

1− θ =
A+B

2(k + 1)
=

δ

k + 1

(
1− m

n

1

c
− 1

2

m

n
dδ

)
.

With this value, we will have R1 ≈ R2.

Study of the term R2. First, we look for conditions on δ for which there exists η1 > 0
such that C ≥ η1δ. More precisely,

C ≥ B − k(1− θ) = B − k

k + 1

A+B

2
=

(k + 2)B − kA
2(k + 1)

.

The constant C is larger than η1δ for any pair (m,n) whose ratio m/n belongs to [0, c0]
as soon as

δ =
1

2(k + 2)

c− c0
dcc0

η = η1 =
1

k + 1

c− c0
c

.

Study of the term R1. Now, we look for conditions on δ for which there exists η0 > 0
such that

1− θ =
1

2(k + 1)
(A+B) ≥ η0δ > 0

for any pair (m,n) whose ratio m/n belongs to [0, c0]. Since the inequality (k+2)B−kA ≥
A+ B holds, this second condition is weaker than the first one, we can thus choose the
same δ as in case R2, and η0 = η1.

These choices define three functions of the ratio (c − c0)/c, and, with these choices,
the three remainder terms are exponentially decreasing, with the third one containing
an extra factor O(δ−`). We now focus on this third one in the last step.

Study of probabilities. Now, with the normalisation given by the denominator, de-
scribed in Proposition 21, and for any pair (m,n) whose ratio belongs to the interval
[0, c0], with c0 < c, the following estimate holds

Pn[C ≥ m] = Am(1)

[(
1− m

n

b

a

)`−1

+O

(
1

n

)
+O

(
1

n`−1

(
1− c0

c

)−`
e−η1δn

)]
,

where the constants of the O-term are uniform. We let now c0 → c as a function of n,
and study in a separate way the cases Am(1) = 1 and Am(1) < 1, as in the proof of
Proposition 11. This ends the proof of Proposition 22. 2

9.10. Computation of the constant term in En[L1].

The expression

L̂1(s) = ζ(s)`−2ζ(2s)(I−G2s)
−2[ζ(s, 1 + x)](0)

involves the Hurwitz zeta function ζ(s, x) and the quasi-inverse (I−G2s)
−2 of the transfer

operator G2s. They admit both singular expressions at s = 1, namely

(I−G2s)
−2 =

λ(s)2

(1− λ(s))2
Ps + 2

λ(s)

1− λ(s)
Ps + (I−Rs)

−2,

ζ(s, 1 + x) =
1

s− 1
− Γ′(1 + x)

Γ(1 + x)
+ (s− 1)f(s, x)
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where f is analytic in s = 1. Using furthermore the analyticity of the projector Ps at
s = 1, and its derivative P′1, we obtain the asymptotic expression of L̂1(s) at s = 1,
namely

L̂1(s)

ζ(s)`−2
=

1

s− 1

λ(s)2

(1− λ(s))2
ζ(2s)P1[1](0)

+
λ(s)2

(1− λ(s))2
ζ(2s)

[
P′1[1]−P1

[
Γ′(1 + x)

Γ(1 + x)

]]
(0)

+
1

s− 1

2λ(s)

1− λ(s)
ζ(2s)P1[1](0)

+
1

s− 1
g(s)

where g(s) is analytic in a half plane containing s = 1. The projector P1 satisfies

P1[f ](x) =
1

log 2

1

1 + x

∫ 1

0

f(t)dt

and then

P1[1](0) =
1

log 2
, P1

[
Γ′(1 + x)

Γ(1 + x)

]
(0) = 0.

Then, straightforward computations provide the asymptotic expansions at s = 1, namely

L̂1(s) = K0(s− 1)−(`+1) +K1(s− 1)−` +O((s− 1)−`+1)

with K0 =
6 log 2

π2
, K1 = K0

[
log 2 P′1[1](0) +

λ′′(1)

π2

]
+ (`− 2)

γ

π2
+ 12ζ ′(2)

where γ is the Euler constant. With Theorem 26, the following asymptotic expansions
hold

Ψ(n)[L̂1(s)]

en
= c0n

` + c1n
`−1 +O(n`−2),

Ψ(n)[ζ(s)`]

en
= c2n

`−1 + c3n
`−2 +O(n`−3),

and involve the following constants

c0 =
K0

`!
(e−1) c1 =

K1(e− 1) +K0

(`− 1)!
, c2 =

1

(`− 1)!
(e−1) c3 =

1

(`− 2)!
(e`γ−`γ+1).

Then, the asymptotic mean En[L̂1] satisfies

En[L̂1] = K0
n

`
+
c1c2 − c0c3

c22
+O

(
1

n

)
. (51)

Remark that all the constants which appear here admit explicit forms, except the first
derivative P′1 and the second derivative λ′′(1), for which such explicit forms are not
known.

10. Conclusion.

Analogy between analyses in the two settings. The analogy between the polyno-
mial and the integer settings is deeper than it might occur at first sight. It is not only
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syntactic as illustrated in Figure 5, but is also “semantic”. This is due to the existence of
a dynamical system that underlies the polynomial Euclid algorithm, and presents strong
(formal) similarities with its analog in the number case. Then, the classical analysis that
can be performed for polynomials without references to the underlying dynamical system
may be viewed as an instance of a dynamical analysis.

We first recall how to define a dictionary between integers and polynomials, as it is
done in (Berthé and Nakada, 2000) or in (Lhote and Vallée, 2008, Section 6.2). When
Fq[t] replaces Z, then Fq(t) is the analog of Q, and the field of Laurent formal power
series Fq((1/t)) is the analog of R. For a Laurent series x, the degree d(x), the absolute
value ||x||, and the integer part are defined as follows:

if x =
∑
n≥n0

xn
tn

(with xn0
6= 0), then d(x) := n0, ||x|| := qd(x), bxc :=

0∑
n=n0

xn
1

tn
.

We now define the analog of the Gauss dynamical system on Fq((1/t)). The analog of
the unit interval is

Xq := {x ∈ Fq((1/t)) | ||x|| ≤ 1} = {x ∈ Fq((1/t)) | bxc = 0},

and the Gauss map is

S : Xq → Xq S(x) =
1

x
−
⌊

1

x

⌋
(x 6= 0), S(0) = 0.

The set of digits is D := {m ∈ Fq[t] | ||m|| > 1} = {m ∈ Fq[t] | d(m) > 0}, and the set of
the inverse branches of S is {h[m](x) = 1/(m + x); m ∈ D}. The ultrametricity of the
norm implies that the absolute value of the derivative of each h[m] is constant on Xq, and
equal to ||m||−2. Then, the dynamical system is without memory, with affine branches,
and the transfer operator Gs defined as

Gs[f ](x) =
∑
m∈D

∥∥∥h′[m](x)
∥∥∥s/2 f ◦ h[m](x) =

∑
m∈D

1

||m||s
f ◦ h[m](x),

transforms the function f = 1 into a constant function Gs[1],

Gs[1] =
∑
m∈D

1

||m||s
=
∑
m∈D

(
1

qd(m)

)s
=
∑
m∈D

(
1

qs

)d(m)

,

which is a power series in z = q−s, and coincides with the (usual) generating function
G(z) of the set D, i.e.,

Gs[1] = G(z) =
∑
m∈D

zd(m) = (q − 1)
∑
n≥1

qnzn =
q(q − 1)z

1− qz
=

q − 1

qs−1 − 1
.

Note that this also gives an easy way for computing the entropy of the dynamical system,
equal to 2q/(q − 1).

General issues analytic combinatorics. Here, with Propositions 11 and 22, we have
described a general setting which possibly leads to beta laws. We now explain on an
example how a beta law may replace a Gaussian law. We consider a product of ` se-
quences, namely Ω := V`, where V is the combinatorial structure Seq(A), and A is itself
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a structure. Then, an element ω of Ω is of the form ω = (v1, v2, . . . , v`), and each vi is
itself a finite sequence of elements of A. We choose an integer k ∈ [1..`], and consider the
parameter R defined as R(ω) := the number of components of the sequence vk. If ` = 1,
the distribution of R is (under general conditions) asymptotically Gaussian; if ` = 2, it is
asymptotically uniform, and for ` ≥ 3, it follows asymptotically a beta law of parameters
(1, `− 1).
In a future work, we wish to better understand in which general settings a beta law may
occur, and describe in which cases it may “replace” a Gaussian law.

Comparison with the random strategy. We now wish to compare more precisely the
random strategy described in (von zur Gathen and Shparlinski, 2006) with the present
analysis. The discussion is not completely clear as the size of the entries is not the
same, and we know that changing the size may strongly change the results. We deal
here with the sum-size while von zur Gathen and Shparlinski (2006) deal with the sup-
size, and more precisely with the height, defined as 9 h(x) := sup(|xi|). The following is
proved in (von zur Gathen and Shparlinski, 2006): the gcd of two linear combinations
of asymptotically the same size as the inputs coincides with their gcd with probability
6/π2. More precisely, the following holds.

Consider three integers M,N, ` satisfying M ≥ max (9`, logN). Consider a vector
a ∈ N` with a height at most equal to N . Then, the following two gcd’s are equal

gcd(a) = gcd(a·x , a·y),

with a probability close to 1/ζ(2) when the pair (x, y) is uniformly chosen in the set

{(x, y) ∈ Ω2 | sup(h(x), h(y)) ≤M}.
We assume that most of entries are balanced, then, with the notation of Section 6.1,
h(x) ∼ π(x)1/` ∼ exp(d(x)/`). The previous result may be thus stated in our setting as
follows.

Consider three integers m,n, ` satisfying m ≥ max (` log(9`), ` log (n/`)). Consider a
vector a ∈ N`+ with a size at most equal to n. Then, the previous equality between the
two gcd’s still holds with a probability close to 1/ζ(2) when the pair (x, y) is uniformly

chosen in the set Ω2
m.

The size of a scalar product d(a·x) satisfies

d(a·x) ∼ log

(
` · exp

[
1

`
(d(a) + d(x))

])
∼ log `+

1

`
(d(a) + d(x)).

Then, the number of steps of the gcd computation is

[for gcd(a)]
1

`
d(a) [for the random computation] log `+

1

`
(d(a) + d(x)).

With the sum-size, the number ` of entries plays a more important role, and there are two
cases, according to the position of the size n with respect to `2. In the case n ≤ `2 (there
are many entries with a small size), then we choose d(x) = ` log `, and the extra-cost for
the random computation is O(log `). In the other case (there are few entries with a large
size), we choose d(x) = ` log(d(a)/`) and the extra-cost is of order log(d(a)/`), and it is
negligible with respect to the initial cost. Then, with the sum-size, there is a need of a
deeper discussion for comparing the deterministic algorithm to the random strategy.

9 As previously, the notation x stands for a vector having ` components.
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When the number of entries and their size are related. The previous discussion
is based on the relative position of the number ` of entries and their total size n. Our
study is performed when ` is fixed. What happens when ` and n are related?

Towards the analysis of other gcd algorithms. The Euclid algorithm (more exactly
its extension as the continued fraction algorithm) admits many generalizations to higher
dimensions, for which there exists an underlying dynamical system. These dynamical
systems have been widely studied for their ergodic properties, for instance by Schweiger
(2000). After a precise study of their transfer operator, we plan to apply the methods
developed here in this multidimensional setting and perform a dynamical analysis of such
algorithms, notably the Brun and the Jacobi-Perron algorithms.
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