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ABSTRACT
We introduce and study a multiple gcd algorithm that is
a natural extension of the usual Euclid algorithm, and co-
incides with it for two entries; it performs Euclidean divi-
sions, between the largest entry and the second largest en-
try, and then re-orderings. This is the discrete version of a
multidimensional continued fraction algorithm due to Brun.
We perform the average-case analysis of this algorithm, and
prove that the mean number of steps is linear with respect
to the size of the entry. The method relies on dynamical
analysis, and is based on the study of the underlying Brun
dynamical system. The dominant constant of the analysis
is related to the entropy of the system. We also compare
this algorithm to another extension of the Euclid algorithm,
proposed by Knuth, and already analyzed by the authors.
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1. INTRODUCTION.
General Context. We study a multiple gcd algorithm
that is a natural extension of the usual Euclid algorithm
for (d+ 1) integers, and coincides with it for d = 1. This is
a discrete version of a multidimensional continued fraction
algorithm, that is itself based on a dynamical system, the
Brun dynamical system, described for instance in [6, 12].
The Brun continued fraction algorithm admits various de-
scriptions and appears under various names; it is closely re-
lated to the Podsypanin modified Jacobi–Perron algorithm,
it is also called the d-dimensional Gauss transformation or
the ordered Jacobi–Perron algorithm [7].
This dynamical system belongs to the class of multidimen-
sional unimodular continued fraction algorithms, described
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in [12], which produce simultaneous diophantine approxima-
tions of a real vector. Then, the literature, for instance in
[9, 5], mainly focuses on the convergence of these approxi-
mations, closely related to the Lyapunov exponents of the
underlying dynamical systems. These algorithms have also
important applications to discrete geometry [3].
With each multidimensional continued fraction algorithm, a
gcd algorithm may be of course associated. However, the
analysis of such a class of gcd algorithms has not been yet
considered. This is our general project, and we begin by the
BrunGcd Algorithm, as it is one of the most “natural” algo-
rithms of this class, and shares many important properties
with the Euclid dynamical system based on the Gauss map.

Main results. We perform the probabilistic analysis of the
BrunGcd algorithm. We first focus on the total number of
steps and prove that it is on average linear in the size of the
entries. The dominant constant equals (d+ 1)/Ed where Ed
is the entropy of the Brun dynamical system. This entropy
is not precisely studied in the literature, but there exists
a conjecture in [7] that states that Ed is Θ(1) for d → ∞.
However, we show that Ed is ∼ log d for d→∞, so that the
dominant constant for the number of steps grows as d/ log d.

We then compare the BrunGcd with another multiple gcd al-
gorithm, the PlainGcd algorithm, described in Knuth’s book
[8], which deals with the classical one-dimensional Euclid
dynamical system. The authors have already analyzed this
algorithm in [4], and prove that the mean number of steps is
also linear in the size of the entries. However, the dominant
constant is independent of the dimension d and equals 2/E1,
where E1 is the entropy of the Euclid dynamical system. We
conclude that the PlainGcd algorithm is much more efficient
than the BrunGcd algorithm, in particular for large d.

We finally explain the inefficiency of the BrunGcd algorithm
when d is large: almost all divisions deal with a quotient
equal to 1. Then the main operation performed is not a di-
vision but... a plain subtraction. This is reinforced by the
comparison with the subtractive version of the algorithm,
whose number of steps is proven to be also of linear complex-
ity. This exhibits two strong differences with the classical
Gcd algorithm (case d = 1).

Methods. We use here the methods of dynamical anal-
ysis such as developed in [2, 10, 13]: a gcd algorithm is
viewed as a dynamical system, with each iterative step be-
ing a linear fractional transformation. Costs of interest are
then described with Dirichlet generating functions that are
algebraically related to transfer operators of the system. The
main analytical property of these series is the existence of a
dominant pole, which is itself closely related to the existence



of a spectral gap for the corresponding transfer operators.
The asymptotic extraction of coefficients is then achieved by
means of Tauberian theorems.

Plan of the paper. We first introduce the algorithm in
Section 2 and state the main results. Then, we study in Sec-
tion 3 the underlying dynamical system, closely related to
the Brun dynamical system, and we provide a characteriza-
tion of its rational trajectories. The following two sections
perform the dynamical analysis of the algorithm, with its
two steps, the combinatorial step (Section 4) and the ana-
lytic step (Section 5). The paper ends with open problems.

2. THE BRUN GCD ALGORITHM.
We describe the BrunGcd algorithm, state the main complex-
ity results, and compare it with the PlainGcd algorithm.

2.1 General description.
The algorithm BrunGcd(d) computes the gcd of (d+ 1) posi-
tive integers. It deals with the input set Ω(d) which gathers
the ordered (d+1)-uples u formed with positive and distinct
integer numbers

Ω(d) := {u = (u0, u1, . . . , ud) | u0 > u1 > u2 > . . . > ud > 0} .

During the execution of the algorithm, some components
“disappear” and the algorithm deals with the disjoint union

Γ(d) =

d−1⊕
`=0

Ω(d−`) .

The algorithm BrunGcd(d) performs a sequence of steps, and
each step deals with the pair (u0, u1) (that contains the two
largest entries of u) and the list Endu which gathers all the
components of u except u0; it divides the first component
u0 by the second component u1, and creates a remainder v0

v0 := u0 −mu1, m :=

[
u0

u1

]
.

Then, the procedure InsDis (v0, Endu) inserts v0 ≥ 0 at a
suitable position inside the list Endu, so that the result re-
mains an ordered uple of distinct positive values: the second
component u1 becomes the largest one, and there are three
possible cases for the insertion (or not) of v0:

(G) (Generic case) if v0 is not present in the list Endu, this
is a usual insertion;

(Z) (Zero case) if v0 = 0, we do not insert v0;

(E) (Equality case) if v0 6= 0 is already present in the list
Endu at position i, we do not insert v0.

In each of the cases (Z) or (E), we do not insert v0, but
we memorize the potential insertion position (in case (E),
we would have inserted v0 “in front of” ui). Finally, each
step of the algorithm BrunGcd(d) is described by the map
U(d) : Γ(d) → Γ(d) which associates with u

U(d)(u) = InsDis (u0 mod u1, Endu) . (1)

The algorithm BrunGcd(d) described in the following figure
decomposes into d phases, labelled from ` = 0 to ` = d− 1.
During each phase, a component is“lost”, and the `-th phase,
denoted by BrunGcd(d,`), transforms an element of Ω(d−`)
into an element of Ω(d−`−1). The phase ends as soon as it

meets case (Z), or1 case (E), where it looses a component.
1The (d− 1)-th phase always ends with the case (Z).

The algorithm stops at the end of the (d− 1)-th phase with
an element of Ω(0) which equals the gcd.

BrunGcd(d)
Input : u ∈ Ω(d)

Ouput: u ∈ N
For ` = 0 to d− 1 do u := Gcd(d,`)(u);

BrunGcd(d,`)

Input : u ∈ Ω(d−`)
Repeat u := U(d)(u) until u ∈ Ω(d−`−1).

2.2 Worst-case behavior.
As will be shown in the long version paper, the worst-case
of the BrunGcd algorithm arises when the quotients are the
smallest possible (all equal to 1, except the last one, equal
to 2), and the insertion positions the largest possible. Then,
the best worst-case bound involves an algebraic number τd
which extends to general dimensions the inverse of the Golden
ratio.

Proposition 1. For any fixed positive integer d, consider
the smallest real root τd ∈]0, 1[ of the polynomial zd+1+z−1,
and, for any integer N, the set of inputs

Ω(d,N) := {u ∈ Ω(d) | u0 ≤ N} . (2)

Then the maximum number Q(d,N) of steps of the BrunGcd

Algorithm on Ω(d,N) satisfies

Q(d,N) ∼
1

| log τd|
logN (N →∞).

When d→∞, the real τd satisfies 1/| log τd| ∼ (d+1)/ log d.

2.3 Probabilistic behavior.
We now describe the precise probabilistic behavior of the
algorithm BrunGcd(d) on the set Ω(d,N) defined in (2).

Theorem 1. When the algorithm BrunGcd acts on the set
Ω(d,N) endowed with the uniform distribution, the following
holds when d is fixed and N tends to ∞:

(a) The total number Ld of steps and the number Md of
steps performed during the first phase satisfies

EN [Ld] ∼ EN [Md] ∼
d+ 1

Ed
· logN

and involves the entropy Ed of the underlying Brun dy-
namical system in dimension d.
When d→∞, the entropy Ed satisfies Ed ∼ log d.
The number Rd of steps performed during the remain-
der of the execution (after the first phase) has a mean
value that is asymptotic to a constant rd.

(b) Let Od be the number of quotients equal to 1 during the
first phase. The ratio between the means EN [Od] and
EN [Md] is asymptotic to a constant ρd < 1, that tends

to 1 for d→∞ with a speed O(2−d/ log d).
Let Σd be the number of steps of the subtractive version
of BrunGcd during the first phase. The ratio between
EN [Σd] and EN [Md] is asymptotic to a constant σd

2.

2We conjecture the asymptotics σd ∼ ζ(d/ log d) for d→∞.



In (a), the total number of steps Ld is proven to remain
on average linear in the size logN . Moreover, (a) exhibits
a strong difference between the first phase, where most of
the work is done, and the remainder of the execution, where
the total number of steps Rd is on average asymptotically
constant. The PlainGcd algorithm exhibits exactly the same
phenomena, as it is shown in [4].

The following figure compares the number of steps of the
BrunGcd and the PlainGcd algorithms, as a function of di-
mension d, when the binary size is fixed to log2 N = 5000.
The complexity of BrunGcd algorithm appears to be sublin-
ear with respect to d (see Section 5), whereas the complexity
of the PlainGcd algorithm appears to be independent of d.
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The two dominant constants, the ratio (d+ 1)/Ed which in-
volves the entropy and intervenes in the average case, and
the ratio 1/| log τd| which arises in the worst-case, both be-
have as d/ log d for d→∞. This indicates the same behavior
for the algorithm in the average-case and in the worst-case.
As the worst-case is reached when the quotients are all equal
to 1, this seems to indicate that the BrunGcd Algorithm deals
with quotients which are very often equal to 1.

This is indeed the case, described in (b), and also illustrated
in the following figure, that exhibits the proportion of quo-
tients equal to 1 during the first phase as a function of the
dimension d. This proportion tends quickly to 1: when
d = 16, more than 99% of the Euclidean divisions are in
fact subtractions and for d = 50, the proportion is 99.99%.
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3. THE UNDERLYING DYNAMICAL SYS-
TEM.

We first describe a continuous extension of the algorithm,
relate it with the Brun dynamical system, and provide an
exact characterization of the trajectories that are related to
the execution of the algorithm.

3.1 Continuous extension of the Gcd algorithm.
We now extend the BrunGcd(d) algorithm into a continuous

process. We use the projection π defined on Γ(d) \ {0} as

π(u) =
1

u0
Endu ,

and the closure of the image π(Γd) is exactly the disjoint
union I(d) of simplexes J(d−`) , defined as

J(d−`) := {x = (x1, . . . , xd−`) | 1 ≥ x1 ≥ . . . ≥ xd−` ≥ 0} ,
and is written as I(d) :=

⊕d−1
`=0 J(d−`). Now, the map V(d) :

I(d) → I(d) is defined on each J(d−`) by V(d)(0
d−`) = 0d−`,

and V(d)(x) = InsDis

({
1

x1

}
,

1

x1
Endx

)
for x 6= 0d−` ,

where InsDis(y0,y) is now extended to I(d). The map V(d)

provides the extension of the conjugate with the projection
π of the map U(d) defined in (1) and used in the BrunGcd(d)
algorithm. Indeed, the equality V(d) ◦ π(u) = π ◦ U(d)(u)
leads to the definition of V(d) on the set π(Γd) which is fur-
ther extended to I(d) “by continuity”.

The dynamical system (Vd, I(d)) is closely related to the
usual Brun dynamical system defined on the simplex J(d)

with the transformation T(d) defined by T(d)(0
d) = 0d, and

T(d)(x) = Ins

({
1

x1

}
,

1

x1
Endx

)
for x 6= 0d , (3)

where now the map Ins(y0,y) is the usual insertion“in front
of”: it performs as InsDis, without removing zeroes and
equal components, and the cases (Z) and (E) may be gath-
ered into a unique case (ZE). There are now only two cases:

(G) if y0 is not present in the list y, this is an usual inser-
tion;

(ZE) if y0 is already present in the list y, we insert y0 in
front of the block of components equal to y0.

It is clear that V(d)(x) = T(d)(x) except in case (ZE). Then,
the two dynamical systems coincide “almost everywhere”
and the trajectories which do not meet case (ZE) will be the
same for the two systems. But we are mainly interested in
rational trajectories, and the rational trajectories may meet
case (ZE) and differ in the two systems. For instance, the
two trajectories of the input π(4, 3, 2, 1) = (3/4, 2/4, 1/4)
are (the inserted component is in bold):

for V(d): (3/4, 2/4, 1/4)→ (2/3, 1/3)→ (1/2, 1/3)→
(1/3)→ (0)

for T(d): (3/4, 2/4, 1/4)→ (2/3,1/3, 1/3)→
(1/2, 1/2, 1/2)→ (1, 1,0)→ (1,0, 0)→ (0, 0, 0) .

However, we will prove in Section 3.3 that a rational tra-
jectory under V(d) –which exactly describes an execution of
the BrunGcd(d) algorithm– mainly decomposes into rational
trajectories under T(d−`). Indeed, except possibly at the end
of each phase, it uses Ins and not InsDis. This is why the
BrunGcd algorithm will use, except at the end of each phase,
the Brun dynamical system, which we now describe.

3.2 The Brun dynamical system.
The pair (T(d),J(d)) defines a dynamical system denoted
as D(d). For any x ∈ J(d), the map T(d) defined in (3)
uses digit (m, j) formed with a quotient m(x) ≥ 1 and



an insertion index j(x) ∈ [1..d]. The set of digits is thus
A(d) := N∗ × [1..d]. We associate with (m, j) the subset

K(d,m,j) := {x ∈ J(d) | m(x) = m, j(x) = j} .

When (m, j) varies in A(d), the subsets K(d,m,j) form a topo-
logical partition of J(d), and the restriction T(d,m,j) of T(d)

to K(d,m,j) is a bijection from K(d,m,j) onto J(d), written as

T(d,m,j)(x1, x2, . . . , xd) =(
x2

x1
, . . . ,

xj−1

x1
,

1

x1
−m, xj+1

x1
, . . . ,

xd
x1

)
.

Its inverse is a bijection from J(d) onto K(d,m,j) written as

h(d,m,j)(y1, . . . , yd) =(
1

m+ yj
,

y1

m+ yj
, . . . ,

yj−1

m+ yj
,
yj+1

m+ yj
, . . . ,

yd
m+ yj

)
. (4)

Any inverse branch of the map T(d) is called an elementary
inverse branch (or an inverse branch of depth one) and the
set of the elementary inverse branches is then

H(d) :=
{
h(d,m,j) | (m, j) ∈ A(d)

}
, (5)

whereas the inverse branches of the map T k(d) are said to be

of depth k and belong to the set Hk(d). We thus define

H?(d−`) :=
⊕
k≥0

Hk(d−`) .

3.3 Return to the Gcd Algorithm
On an input u ∈ Ω(d), the execution of the BrunGcd(d) algo-
rithm is described by the trajectory of u under the map U(d)

which ends at gcd(u). It proves useful to consider one more
step, and now, the trajectory of u under the map U(d) ends
at 0. It gives rise to the rational trajectory of the vector
x := π(u) under V(d), that also ends at 0. This trajectory
uses at each step a branch of the map V(d). And we wish
to precisely describe the set B(d) of compositions of inverse
branches of the map V(d) which are possibly used by such
particular trajectories. Then the equality π(u) = h(0) (for
h ∈ B(d)) gives rise to a bijection between π(Ω(d)) and B(d).
Moreover, there is also a bijection between π(Ω(d)) and the
set of coprime inputs

Ω(d) := {u ∈ Ω(d) | gcd(u) = 1} , (6)

and thus a bijection between B(d) and Ω(d).

We now describe B(d), and first focus, for each ` ∈ [0..d−1],
on the set P(d−`) used by the part of the trajectory associ-
ated with the `-th phase, when the iterates of u under U(d)

belong to Ω(d−`). Then, the iterates of x under V(d) belong
to the simplex J(d−`). We study in a separate way

(a) the steps of the `-phase, which are not the last one,
(b) and the last step of the `-phase.

Consider first (a). In this case, such a step does not loose a
component, and only involves a step of type (G). Then, the
trajectory uses branches of the map T(d−`), and each step
uses possibly any inverse branch in the set H(d−`) defined in
(5). Hence, the set of the inverse branches used during the
`-phase, except in the final step, is the set H?(d−`).
Consider (b). Now, a component is lost since the insertion
is not done, and there are two possible cases.

Case (Z). The quotient 1/x1 is equal to an integer m ≥ 2,
the position of potential insertion is j = d− `. The equality

V(d)(x) = m · Endx holds and the inverse branch associates
with the (d− `− 1)-uple y the (d− `)-uple

z(d−`,m)(y) =
1

m
(1,y) . (7)

The set Z(d−`) of inverse branches used in case (Z) is thus

Z(d−`) = {z(d−`,m) | m ≥ 2} .
Case (E). An equality of the form (1/x1)−m = xi/x1 holds
with a quotient m ≥ 1 and a potential insertion position3

j = i−1 < d−`. Then, Case (E) cannot occur for ` = d−1.
The equality V(d)(x) = (Endx)/(1−xi) holds and the inverse
branch associates with the (d− `−1)-uple y the (d− `)-uple

s(d−`,m,j)(y) =
1

m+ yj
(1,y) . (8)

The set of inverse branches S(d−`) used in case (E) is thus
the empty set for ` = d− 1 and

S(d−`) = {s(d−`,m,j) | m ≥ 1, j < d− `} (for ` < d− 1).

In summary, the set of possible inverse branches used during
the last step of the `-th phase is F(d−`) = S(d−`) ∪ Z(d−`).

Finally, we have proven the following.

Proposition 2. The BrunGcd(d) algorithm builds a bi-
jection between the set Ω(d) of coprime inputs of Ω(d) and
the set B(d) of inverse branches possibly used by the rational
trajectories of the shift V(d). This set is written as

B(d) = P(d) ◦ P(d−1) ◦ . . . ◦ P(1) = P(d) ◦ B(d−1)

and involves the sets P(d−`) of inverse branches used by the
BrunGcd(d,`), characterized as

P(d−`) = H?(d−`) ◦ F(d−`).

3.4 Why InsDis rather than Ins ?
We have decided to deal with the set Γ(d). We are then led
to use InsDis to stay inside Γ(d). But there is a natural
question: why not dealing with the set Γ(=,d) with possible
blocks of equal non-zero components? Then, we could use
Ins and stay inside Γ(=,d). This defines another algorithm,
the BrunGcd=(d) algorithm, whose continuous extension di-
rectly leads to the Brun dynamical system. Even though
the whole path seems more natural, we have to memorize
the position of each block of equal components, and this
leads to a quite involved analogue set B(=,d) that describes
the rational trajectories of the BrunGcd=(d) algorithm.

4. DYNAMICAL ANALYSIS (I).
We now begin the analysis of the algorithm, and introduce
the main objects: the class of costs of interest, the (Dirichlet)
generating functions, the generating operators. The main re-
sult of this section (Theorem 2) relates generating functions
and generating operators.

4.1 Additive costs
We consider here costs that are said to be additive. One
begins with a nonnegative elementary cost c defined on each
inverse branch in B(d) of depth one. Such a cost is then
extended in an additive way on B(d), namely

c(h1 ◦ h2 ◦ · · · ◦ hp) :=
∑p
i=1 c(hi).

3We recall that we would have inserted “in front of”.



Now, a cost C defined on Ω(d) is said to be additive if it is
associated with such a cost c, and satisfies

C(u) := c(h) when π(u) = h(0).

Then C(u) equals the total cost of c of the trajectory of
π(u) and satisfies C(u) = C(λu) for any integer λ 6= 0.
There are three main additive costs of interest here.

(i) The total number Cd,` of steps during the `-th phase
(except the final step), associated with the character-
istic function c of the set H(d−`); with the family Cd,`,
we return to the number of steps mentioned in Theo-
rem 1, as the following relations hold: Ld = Md +Rd

Md = 1 + Cd,0, Rd = (d− 1) +

d−1∑
`=1

Cd,` . (9)

(ii) The number Od of steps of the first phase with a quo-
tient equal to 1, associated with the characteristic func-

tion c of the subset H(1)

(d) with quotients equal to 1.

(iii) The number Σd of steps of the subtractive algorithm
during the first phase, associated with the cost c which
associates with an inverse branch h of the first phase
its quotient m.

The associated elementary costs deal with a specific phase4:
the `-phase for Cd,` and the first phase ` = 0 for Md, Od, Rd.
The cost C is said to be concentrated on this phase.
inverse,

4.2 Dirichlet generating functions.
The (basic) Dirichlet generating function S(d)(s), of the in-
put set Ω(d) relative to the length ‖u‖ := u0, is defined as

S(d)(s) :=
∑

u∈Ωd

1

||u||s . (10)

In the same vein, with a cost C : Ω(d) → N, we associate the
cumulative generating function of the cost

Ŝ(d,C)(s) :=
∑

u∈Ωd

C(u)

||u||s =
∑
n≥1

n−s
∑
‖u‖=n

C(u) . (11)

When Ω(d,N) is endowed with the uniform distribution, the
mean EN [C] of cost C on Ω(d,N) is expressed with the coef-
ficients of the cumulative generating function, as

EN [C] =
1

ΦN
[
S(d)

]ΦN
[
Ŝ(d,C)

]
, (12)

where ΦN [f ] is defined as

ΦN [f ] =
∑
n≤N

an when f(s) =
∑
n≥1

an
ns
. (13)

Here, singularity analysis uses the Delange Tauberian The-
orem (stated in Section 5) which relates the asymptotics of
the coefficients of a generating function to the nature and
the position of its dominant singularity. Then, we need an
alternative expression of the series which highlights the sin-
gularities. Such an expression exists for the series S(d)(s),

S(d)(s) =
1

d!

∑
n≥d+1

1

ns
(n− 1)(n− 2) . . . (n− d).

4except with its final step

As its “dominant” series is (1/d!)ζ(s− d), the series S(d)(s)
has a dominant simple pole at s = d+ 1 with residue 1/d!.

However, such a “dominant” behavior is not known for the
other Dirichlet series. The remaining of the paper is devoted
to this task and is based on the dynamical analysis approach
where generating functions are expressed with generating
transfer operators. For this aim, we introduce an interme-
diate tool, the Dirichlet (bivariate) generating function,

S(d,C)(s, w) :=
∑

u∈Ωd

wC(u)

||u||s . (14)

whose derivative is related to the cumulative generating func-

tion: the relation Ŝ(d,C) = ∆[S(d,C)] holds and involves the
functional ∆ defined as

∆[A](s) :=
∂

∂w
A(s, w)

∣∣∣
w=1

. (15)

As we wish to use the bijection described in Proposition 2,
we also introduce the three underlined series that are the
exact counterparts of series defined in (10), (11), (14), now
with respect to the set Ω(d) of coprime inputs. As C is an
additive cost, the non-underlined series are related to their
underlined conterparts as

S(d)(s)

S(d)(s)
=
S(d,C)(s, w)

S(d,C)(s, w)
=
Ŝ(d,C)(s)

Ŝ(d,C)(s)
= ζ(s) . (16)

4.3 Generating operators
Let G be a set of inverse branches; we say that h is a factor
of G if h is a factor of an element of G, and we denote this
situation as h ∝ G. In the same vein, a set H is said to be a
factor of G if each element of H is a factor of G, and this will
be denoted as H ∝ G. We will consider in the sequel factors
of B(d). The following easy result is central in this work.

Lemma 1. Any inverse branch h ∝ B(d) is a linear frac-
tional transformation (LFT), and any factor of P(d−`) can

be written as h =
1

D[h]

(
N1[h], N2[h], . . . , Nd−`[h]

)
,

where the denominator D[h] and the numerators Ni[h] are
co-prime affine functions. When h ∈ H(d−`), its Jacobian
J [h] is related to the denominator D[h] as

J [h] = |D[h]|−(d−`+1) . (17)

The proof (by recurrence on the depth of h) begins with the
expression of the branches of depth 1 given in (4),(7),(8).

Transfer operators are central tools for studying probabilis-
tic properties of trajectories in dynamical systems; see e.g.
[2, 10, 13]. Here, we adapt these tools to our needs, strongly
use the fact that inverse branches are LFT, and also con-
sider an additive cost c. It proves useful to deal with two
parameters s and w, and we define the generating operator
Gs,w,[c],〈h〉 of the inverse branch h ∝ B(d) as

Gs,w,[c],〈h〉[f ](x) := |D[h](x)|−s wc(h)f ◦ h(x) .

Then, the operator may be extended for a subset G ∝ B(d),

via the equality Gs,w,[c],〈G〉 :=
∑
h∈G

Gs,w,[c],〈h〉 ,

and the following relation is valid for disjoint factors of B(d):



Gs,w,[c],〈G1+G2〉 = Gs,w,[c],〈G1〉 + Gs,w,[c],〈G2〉 .

If now G1 and G2 may be composed and satisfy (G1 ◦ G2) ∝
B(d), multiplicative properties of the denominator, together
with additive properties of the cost, entail the equality

Gs,w,[c],〈G1◦G2〉 = Gs,w,[c],〈G2〉 ◦Gs,w,[c],〈G1〉 .

Then, there exists a “dynamical” dictionary similar to the
analytic combinatorics dictionary. In particular, when G? ∝
B(d), the generating operator of G? is the quasi-inverse

Gs,w,[c],〈G?〉 =
(
I−Gs,w,[c],〈G〉

)−1
.

When G coincides with the set H(d−`) ∝ B(d) of inverse
branches of the Brun dynamical system D(d−`), then the
generating operator Gs,w,[c],〈H(d−`)〉 is closely related to the

(usual) weighted transfer operator Hs,w,[c],(d−`) of the Brun
dynamical system D(d−`) defined by

Hs,w,[c],(d−`)[f ](x) :=
∑

h∈H(d−`)

J [h](x)s wc(h)f◦h(x) , (18)

and, with the scale change of (17), we will obtain (19).

With Proposition 2, this yields the following characteriza-
tion of the generating operator of the set B(d) used by the
BrunGcd(d) algorithm.

Proposition 3. Let c be an additive cost on the set B(d).
(a) The generating operator Bs,w,[c],(d) of the set B(d) used
by the BrunGcd(d) algorithm decomposes as

Bs,w,[c],(d) = Ps,w,[c],(1) ◦Ps,w,[c],(2) ◦ · · · ◦Ps,w,[c],(d) ,

and involves the sequence of generating operators Ps,w,[c],(d−`)
of the set P(d−`) used by the BrunGcd(d,`) algorithm. It then
satisfies the recurrence relation

Bs,w,[c],(d) = Bs,w,[c],(d−1) ◦Ps,w,[c],(d).

(b) Each operator Ps,w,[c],(d−`) involves the quasi-inverse of
the generating operator Gs,w,[c],(d−`) of the set H(d−`) and
the generating operator Fs,w,[c],(d−`) associated with the final
set F(d−`) of the `-th phase, and is equal to

Ps,w,[c],(d−`) = Fs,w,[c],(d−`) ◦ (I −Gs,w,[c],(d−`))
−1 .

(c) The generating operator Gs,w,[c],(d−`) of the set H(d−`) is
closely related to the (weighted) transfer operator Hs,w,[c],(d−`)
of the dynamical system D(d−`) defined in (18) via the change
of scale s 7→ s/(d− `+ 1), namely

Gs,w,[c],(d−`) = Hs/(d−`+1),w,[c],(d−`) . (19)

Remark. It proves also useful to deal with the plain (un-

weighted) operator Gs,〈G〉, and the cumulative operator Ĝs,〈G〉
defined in an analogue way as for series as

Gs,〈G〉 =
∑
h∈G

Gs,〈h〉 Ĝs,〈G〉 =
∑
h∈G

c(h)Gs,〈h〉, (20)

with Gs,〈h〉[f ](x) := |D[h](x)|−s f ◦ h(x) .

These two operators are related to the weighted operator
relative to any cost c via the equality

Gs,〈G〉 = Gs,1,[c],〈G〉, Ĝs,[c],〈G〉 = ∆[w 7→ Gs,w,[c],〈G〉] .

4.4 Useful expressions for generating functions.
The following result is one of the key ingredients of the pa-
per. It is typical in dynamical analysis as it relates generat-
ing functions and generating operators.

Theorem 2. Consider the BrunGcd(d) algorithm acting
on the set Ω(d), together with an additive cost C, related to
some elementary cost c. Then, the three following relations
hold between

(i) the three generating functions relative to cost C, de-
fined in (10),(11),(14),

(ii) the three analogous generating operators of the set Bd,
i.e., the bivariate one defined in Proposition 3 and the
other two defined in (20)

S(d,C)(s, w) = ζ(s) ·Bs,w,[c],(d)[1](0) ,

S(d)(s) = ζ(s) ·Bs,1,[c],(d)[1](0) ,

Ŝ(d,C)(s) = ζ(s) · B̂s,[c],(d)[1](0) .

The proof is indeed quite short. Let h ∈ B(d). The equalitiy

π(u) =

(
u1

u0
,
u2

u0
, . . . ,

ud
u0

)
= h(0)

together with gcd(u) = 1 proves that the denominator of the
LFT h satisfies |D[h](0)| = u0. Moreover, as C is an additive
cost associated with cost c, the equality C(u) = c(h) holds.
Now, the bijection between Ω(d) and the set B(d), together

with Eq. (16), entail the relations

S(d,C)(s, w) = ζ(s) · S(d,C)(s) = ζ(s) ·
∑

u∈Ω(d)

wC(u)

us0

= ζ(s) ·
∑

h∈B(d)

wc(h) |D[h](0)|−s = ζ(s) ·Bs,w,[c],d[1](0) .

4.5 Derivatives of quasi-inverses.
When the cost C is concentrated on the phase `, the func-
tional ∆ defined in (15) is applied to the quasi-inverse (I −
Gs,w,[c],(k))

−1 with k = d − `. This produces two (plain)
quasi-inverses and a middle operator (which depends on the
cost c). Now, via (19), we return to the operator H defined
in (18), with the scale-change t = s/(k + 1), and obtain

∆[w 7→ (I −Gs,w,[c],(k))
−1]

= (I −Ht,(k))
−1 ◦ H

(c)

t,(k)◦ (I −Ht,(k))
−1 ,

where the “middle” operator is a weighted operator

H
(c)

t,(k)[f ] :=
∑

h∈H(k)

c(h) · J [h]t · f ◦ h .

The (plain) quasi-inverses will play a central role in the anal-
ysis, whereas the middle operators5 and the end-of-phase
operators will only play a secondary role. We will now focus
on the quasi-inverses of the transfer operators and denote

Q(k)(t) := (I −Ht,(k))
−1. (21)

The plain Dirichlet series involves one quasi-inverse for each
phase, whereas the cumulative Dirichlet series relative to a
cost C concentrated on the `-th phase involves two quasi-
inverses for the `-th phase, and only one for each other phase.
This is now precisely stated:

Proposition 4. Associate with ` ∈ [0..d − 1] the scale
change t` : s 7→ s/(d− `+ 1). Then the following holds:

5except for d = 1



(a) The plain Dirichlet series S(d)(s) involves a unique quasi-
inverse Q(d−`)(t`) for each phase of index ` ∈ [0..d− 1].

(b) If C is `-concentrated, the cumulative series Ŝ(d,C) of cost
C involves one quasi-inverse Q(d−k)(td−k) for each phase of

index k 6= ` and a “double” quasi-inverse Q2
(d−`)(td−`) for

the `-th phase.

This ends the first part of our analysis, of a combinatorial
nature. We now begin the second part of our analysis, of an
analytic nature.

5. DYNAMICAL ANALYSIS (II)
We now return to the proof of Theorem 1. With (12) and
(13), we know that the mean values of interest are related
to coefficients of Dirichlet series, plain or cumulative ones.
With the Delange Tauberian theorem, stated in Section 5.3,
we know how to relate the asymptotic behavior of coeffi-
cients with singularities of the Dirichlet series. We then have
now to study the Dirichlet series, from an analytic point of
view, and discover their singularities. With Proposition 4,
their singularities are brought by quasi-inverses. This is why
we begin by studying the quasi-inverse in Section 5.1, and
then apply this study to the Dirichlet series in Section 5.2.

5.1 Properties of quasi-inverses.
Consider an index k ∈ [1..d]. The transfer operator Ht,(k)

acts on the space C1(J(k)). It is quasi-compact and the dom-
inant part of its spectrum is discrete. Furthermore, as the
operator Ht,(k) is the density transformer of the system for
t = 1, the value 1 belongs to the spectrum, and as the sys-
tem is ergodic [12], this is its unique dominant eigenvalue.
The dominant eigenfunction is explicitly known (see [1])

ψk(x) =
∑
σ∈Sk

k∏
i=1

1

1 + xσ(1) + xσ(2) + . . .+ xσ(i)

; (22)

and involves the set Sk of permutations on [1..k]. The quasi-
compacity of the operator together with perturbation theory
entails the existence of a spectral decomposition

Ht,(k) = λ(k)(t)At,(k) + Kt,(k) ,

on a neighborhood of t = 1 that involves the dominant
eigenvalue λ(k)(t), the projection At,(k) on the dominant
eigenspace, and a “remainder” operator Ks,(k) whose spec-
tral radius is strictly smaller than |λ(k)(t)|. Then, the rela-
tion At,(k) ◦Kt,(k) = Kt,(k) ◦At,(k) = 0 leads to the spectral
decomposition for the quasi-inverse

Q(k)(t) =
λ(k)(t)

1− λ(k)(t)
At,(k) + (I−Kt,(k))

−1 .

Thus, the quasi-inverse has a pole at t = 1, with a residue
which involves in particular the entropy Ek = −λ′(k)(1). Fur-
thermore, as the inverse branches are LFT’s, there is an ape-
riodicity property that entails that t 7→ Q(k)(t) is analytic
on the punctured vertical line {<t = 1, t 6= 1}.
Letting now k := d− `, and using for each phase of index `
the scale change t` = s/(d− `+ 1), we describe the behavior
of the quasi inverse s 7→ Q(d−`)(t`).

Proposition 5. Consider for ` ∈ [0..d−1] the scale change
s 7→ s/(d − ` + 1). Then, the quasi-inverse s 7→ Q(d−`)(t`)

relative to the `-th phase is analytic on the punctured half-
plane {<s ≥ d − ` + 1, s 6= d − ` + 1} and admits a simple
pole at s = d− `+ 1, with a residue T(d−`) defined as

T(d−`)[f ] =
d− `+ 1

Ed−`
Id−`[f ]

ψd−`
κd−`

, (23)

which involves the entropy Ek, the integral Ik on the simplex
J(k) and the constant κk := I[ψk].

5.2 Analytic properties of Dirichlet series.
We now return to the number of steps that the BrunGcd al-
gorithm performs during its various phases. With Theorem
2, Propositions 4, 5, and Eq. (9), we describe the analytic
properties of the Dirichlet series of interest.

Proposition 6. Consider the BrunGcd algorithm when
acting on Ω(d), together with the total number Ld of steps,
the number Md of steps in the first phase, the number Od of
quotients equal to 1 during the first phase, the number Σd of
subtractive steps during the first phase and the number Rd
of steps in the following phases. Associate the six Dirich-
let generating functions of interest, namely, the plain series
and the five cumulative series relative with number of steps
Ld,Md, Od,Σd, Rd. The following holds:

(a) The six series are analytic in the punctured half-plane
{<s ≥ d+ 1, s 6= d+ 1}.

(b) The plain series and the cumulative series relative to
Rd admit a simple pole at s = d + 1. Their residues
are denoted as Td and rdTd, with Td = T(d)[1](0).

(c) The cumulative series relative to Md, Od,Σd and Ld
admit a pole of order 2 at s = d+1, and their dominant
constants Dom are expressed with the residue Td and
three other constants ad, ρd, σd. One has:

Dom[Ld] = Dom[Md] = ad Td ,

Dom[Od] = ad ρd Td, Dom[Σd] = ad σd Td .

The constants ad, ρd and σd involve the entropy Ed
and the constant κd(y), defined in (24),

ad =
d+ 1

Ed
, ρd = 1−κd(1/2)

κd
, σd =

1

κd

∑
m≥1

κd

(
1

m

)
.

5.3 Extraction of coefficients.
It remains to relate the asymptotics of the coefficients of the
Dirichlet series and their dominant singularities, and this is
done via the Delange Tauberian Theorem.

Theorem 3 (Delange). For σ > 0, consider a Dirich-
let series S(s) with non-negative coefficients which converges
for <s > σ. Assume that the following holds:
(i) S(s) is analytic on <s = σ, s 6= σ;
(ii) near σ, S(s) satisfies S(s) = A(s)/(s − σ)γ+1 where A
is analytic in σ, A(σ) 6= 0 and γ ≥ 0.
Then as N →∞, the following asymptotics holds

ΦN [S] ∼ A(σ)

σΓ(γ + 1)
Nσ(logN)γ , for ΦN defined in (13).

With Proposition 6, all the Dirichlet series of interest sat-
isfy the hypotheses of the Delange Tauberian Theorem with
σ = d + 1, the series of (b) with γ = 0 and the series of (c)



with γ = 1. With Eq. (12), the mean value of any cost C
of interest equals a ratio whose numerator and denomina-
tor can be estimated with the Delange Tauberian Theorem.
This concludes the proof of Theorem 1, and the main con-
stants involved are constants rd, ad, ρd, σd. We do not know
much about the asymptotics of rd, but we now focus on the
asymptotics of the other constants ad, ρd, σd for d→∞.

5.4 The main constants of the analysis.
Except for d = 1 and d = 2, the values of the volume con-
stant κd and the entropy Ed are not known, as well as their
dependency with respect to dimension d. We deal with the
simplex yJ(d), for y ∈ [0, 1], and introduce the function

κd(y) :=

∫
yJ(d)

ψd(x)dx =

∫
[0,y]d

ϕd(x)dx (24)

with ϕd(x) =
1

1 + x1
. . .

1

1 + x1 + x2 + · · ·+ xd
.

Note that κd = κd(1). The ratio κd(y)/κd is central, because
it coincides with the limit probability that a quotient m of
the Brun system in dimension d be larger than 1/y.
The following result provides two new (and important) es-
timates: the first one contradicts a conjecture of Hardcastle
and Khanin [7] which states that the entropy is asymptot-
ically constant. The second one describes (for d → ∞) the
limit distribution of the quotients in the Brun system.

Proposition 7. The constant κd(y) and the entropy Ed
are expressed as one-dimensional integrals:

κd(y) =
1

d!

∫ ∞
0

e−uβ(uy)ddu, β(u) :=

∫ u

0

1− e−v

v
dv,

Ed = (d+ 1)

∫ 1

0

1

y

κd(y)

κd
dy =

d+ 1

d!κd

∫ ∞
0

e−u

u
β(u)ddu.

The following estimates hold for d→∞ and y ∈]0, 1] fixed:

Ed ∼ log d,
κd(y)

κd
= y(1−ε)d/ log d for d > dε . (25)

The complete proof will be given in the long version paper.
We describe here the main ideas. The integral expression for
κd(y) is obtained via the Laplace transform. The expression
of the entropy is obtained via the Rohlin formula. As each
integral expression involves a large power of the function β,
a method of Laplace type asymptotically compares such an
integral to the maximum value of the integrand.

The following figure compares the theoretical curve Ed =
log d with experimental values of Ed which are obtained via
the number of steps during the first phase.
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6. CONCLUSION AND OPEN PROBLEMS
We have precisely used the Brun underlying dynamical sys-
tem to describe the probabilistic behaviour of the BrunGcd

algorithm. We have studied the asymptotics (for d→∞) of
the main constants that intervene in the analysis and also
confirmed with experiments the main results of the analy-
sis. We conclude that the BrunGcd algorithm is not efficient.
This is probably the case for all the gcd algorithms which are
based on multidimensional continued fraction algorithms.

Nevertheless, it would be interesting to study other costs
such as the bit-complexity as in [10] or perform a distri-
butional analysis; in this case, we need to extend to higher
dimensions the approach that was conducted in [2] for d = 1.

We also wish to use our good knowledge of the Brun rational
trajectories obtained through dynamical analysis, in order to
study simultaneous approximations associated with rational
vectors, which corresponds to the real algorithmic situation.

Finally, it would be interesting to analyze the extended gcd
algorithm based on the LLL algorithm and described in [11],
even if its underlying system is quite complex to deal with.
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