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Abstract

In data mining, enumerate the frequent or the closed pat-
terns is often the first difficult task leading to the association
rules discovery. The number of these patterns represents a
great interest. The lower bound is known to be constant
whereas the upper bound is exponential, but both situations
correspond to pathological cases. For the first time, we give
an average analysis of the number of frequent or closed pat-
terns. Average analysis is often closer to real situations
and gives more information about the role of the parame-
ters. In this paper, two probabilistic models are studied:
a BERNOULLI and a MARKOVIAN . In both models and
for large databases, we prove that the number of frequent
patterns,for a fixed frequency threshold, is exponential in
the number of items and polynomial in the number of trans-
actions. On the other hand,for a proportional frequency
threshold, the number of frequent patterns ispolynomial
in the number of itemsand does not involve the number of
transactions. Finally, we prove in theBERNOULLI model
that the number of closed patterns, for a proportional fre-
quency threshold, is polynomial in the number of items.

1 Introduction

The aim of the data mining is to extract relevant informa-
tion from large databases. These databases gathertransac-
tions, which are sets ofitems, for example a list of purchase
in a shop or a set of biomedical characteristics. In associa-
tion rules discovery, the sets of items which are frequently
present play a central role. These frequentpatternscan tell
that a conjunction of items are often present together in the
transactions. They allow to build association rules, which
are at the core of numerous data processes, but the difficulty
of the task is known to lie in the frequent patterns mining.

The motivation of our article is to make clearer this dif-
ficulty. When the complexity of a pattern mining algo-

rithm is studied, it most of the time focuses on the worst
cases, or on the bottleneck of specific sub-tasks, such as
database accesses. For example, in A-PRIORI [2], the first
and most popular algorithm, there will be as much database
scans as the size of the largest frequent pattern. Facing to
large databases, this is an important point. More precisely,
GUNOPULOS et al. have shown that mining the frequent
patterns with such level-wise algorithms requires as many
database accesses as there are elements in the positive and
negative borders [5] (i.e. the number of maximal frequent
and minimal infrequent patterns). It follows that the com-
plexity of A-PRIORI intuitively lies in the quantity of fre-
quent patterns. The number of database accesses does not
address the real difficulty of pattern mining, and TOIVO-
NEN gives in [11] a probabilistic method based on sampling,
which finds all the probably frequent patterns with only one
database access.

In order to improve the efficiency of pattern mining,
closedpatterns are very interesting. A closed pattern is the
maximal pattern (w.r.t. the inclusion) of the set of patterns
having the same frequency and being present in the same
transactions. When they are associated with the correspond-
ing pattern of transactions, both constitute aconcept. Con-
ceptual learning is a hot topic [12], and closed patterns are
an easy way to non redundant association rules [13]. Their
mining has then been widely examined [7, 3].

Gunopulos et al. have shown that deciding whether there
exists a frequent pattern witht items is NP-complete [6, 9].
The associate counting problem is #P-hard. When all the
items belong to all the transactions, each pattern is frequent
pattern so that, in the worst case, the number of frequent
patterns is of orderO(2m). On the other hand, if each trans-
action is empty, all the patterns are infrequent and the num-
ber of frequent patterns is of constant order. There is a large
gap between the worst and the best cases and both situations
are pathological examples. In practice, the real order is not
known.

Regarding the complexity, average analysis is an inter-
esting point of view for three reasons. First of all, each



database is associated to a probability, so that the analy-
sis considers the diversity of cases. Then, if the model is
close to the reality, this analysis gives a realistic average
behaviour of the studied parameter, which is sometimes far
from the worst case. Finally, if the concentration property
around the average is satisfied, fast counting algorithm are
available. On the other hand, real life is often complex and
the modelization is not an easy task. Furthermore, the more
complex is the modelization, the more difficult is the aver-
age analysis.

We found one such study [9], but it is related to the
failure rate of A-PRIORI. It is useful for predicting the
number of candidates that the algorithm will have to check.
This work confirms the results of [4], which used an upper
bound. On other hand, the authors of the A-PRIORI al-
gorithm have explained in [1] that there are very few long
patterns in a random database. In a previous work [8], we
used the same probabilistic model and recall here our re-
sults. We also improve them with studying a MARKOVIAN

model.
In this article, we propose for the first time, an average

analysis of the number of frequent and closed patterns for
two probabilistic models of databases. In the worst cases,
the results are well mastered: there is an exponential num-
ber of frequent patterns, according to the number of items.
On the contrary, we provide anaverage analysisof the num-
ber of frequent patterns, with two probabilistic models: the
first is the simple BERNOULLI, where each transaction con-
tains an item with a uniform probabilityp; the second is a
MARKOVIAN model, which better reflects the correlation
of the real data, because each transaction is generated by
a MARKOVIAN source. Indeed, the model considers local
correlations between close items but the transactions stay
independent two by two. Both models are rather simple and
not close to the reality, however they point very interest-
ing phenomena. In particular, we show that the number of
frequent patterns, with a proportional minimum frequency
threshold, is surprisingly polynomial in the number of items
and does not involve the number of transactions.

2 Database modelization

2.1 Definitions and notations

The set of items is notedI = {1, . . . ,m} and has the
cardinalitym whereas the set of transactions is notedT =
{t1, . . . , tn} and has the cardinalityn. By definition, each
transactionti is a subset ofI and a databaseB is a couple
(I, T ). The databaseB admits a matrix representationχ
whereχ is a boolean matrix whose coefficientsχi,j , i =
1..n, j = 1..m satisfyχi,j = 1 if and only if j ∈ ti We
will not discuss here about the methods for obtaining such
a boolean matrix, starting from continuous or multi-valued

items (see [10] for an example). Thesupportof a pattern
A ⊂ I is the set of all transactions containingA, and the
frequency ofA is the size of its support.

Definition 1 (frequent pattern). Let B be a binary
database withm items andn transactions andγ a strictly
positive integer smaller thann. A patternA is said γ-
frequent if|support(A)| ≥ γ.

We now give, in this framework, the definition of aγ-closed
pattern:

Definition 2 (frequent closed pattern). Let B = (I, T )
be a binary database withm items andn transactions and
γ a strictly positive integer smaller thann. Fix alsoχ the
matricial representation ofB. A patternA is γ-closed if:
- A is aγ-frequent pattern,
- for all item j in I\A, there exists a transactionti in
support(A) such thatj does not belong toti, i.e.,χi,j = 0.

2.2 First hypothesis

Hypothesis on the sizes: biological databases have
many items and few transactions, leading tofat databases,
which are wider than high. It was observed that the number
of frequent or closed patterns have a completely different
behaviours than inlarge databases, which are higher than
wide. It is then normal to consider this phenomenon. In this
article, we deal withlarge databaseswhere the number of
items is at most polynomial in the number of transactions
and vice versa. The mathematical version of this property
is: (H1) log m ∼ c log n, c > 0.
Recall thatm (resp.n) is the number of items (resp. trans-
actions). We will see that this property plays an important
role in our results.

Hypothesis on the frequency threshold:a pattern is
said frequent as soon as its frequency rises over a user
defined thresholdγ. For γ = 1, experiments lead to an
exponential number of frequent/closed patterns whereas
for γ = n, it is constant and often equal to zero. Hence
according to the frequency threshold, we may expect
different results. Two kinds of thresholds are considered in
this article:
- fixed threshold:γ is fixed and does not depend onn or m.
It corresponds in practice to very small threshold compared
to the numbern of transactions (10 for instance).
- proportional threshold: there existsr ∈]0, 1[ such that
γ = r · n. In this case, the threshold is a non-negligible
proportion of all the transactions (10% for instance).

Remark that with the proportional threshold, the number
of unfrequent patterns is much more important than with
the fixed threshold, leading to a complete different behavior
(see next section).



2.3 BERNOULLI model

We now describe the simple BERNOULLI model. Since
we can not appreciatein advancethe correlations existing
in a databases, we first suppose that:

Model 1 (BERNOULLI model). The database
(χi,j)i=1..n,j=1..m forms an independent family of
random variables which follows the sameBERNOULLI law
of parameterp in ]0, 1[.

This model is far from the reality. Indeed, an equivalent
in Information Theory is to modelize the French language
with a memoryless source that respects the probability of
each letter. The result is not very realistic but theoretical
analysis can yet be lead.

2.4 MARKOVIAN model

In the second model, each transaction is a sequence of
m random variables, with values in{0, 1} that follow a
MARKOVIAN process of orderk. In other words, an item
belongs to a transaction according to a law that only in-
volves the values of thek previous items.

The MARKOVIAN model (of orderk) is completely de-
scribed by the way the firstk items are affected and the tran-
sition probabilities(pw→x)w,x, x ∈ {0, 1}, w ∈ {0, 1}k,
wherepw→x is the probability that the new item take the
valuex knowing that thek previous items form the wordw.
We suppose that the initial values of the firstk variables are
given by the distributionfinit = (fw)w∈{0,1}k .
We now precisely describe the second model.

Model 2 (MARKOVIAN model). Fix k ≥ 1, finit =
(fw)w∈{0,1}k an initial distribution on {0, 1}k and
(pw→x)w∈{0,1}k,x∈{0,1} the transition probabilities. Then,
each transaction is computed independently from the other
transactions according to the following method:
for a transactiont = (χ1, . . . , χm), (χ1, . . . , χk) is com-
puted according to the initial distributionfinit. Then, the
values ofχk+1, . . . , χm are sequentially evaluated using
thek previous values and the transition probabilities.

Contrary to the BERNOULLI model, the MARKOVIAN

model introduces local correlations between items. This
is of course insufficient for modeling real databases but
it constitutes an improvement compare to the first model.
MARKOVIAN databases may have a sense if an organisa-
tion of the items entails that close items are much more cor-
related than distant items. In bioinformatics, the items are
the genes and it is known that close genes are much more
correlated than distant genes.

3 Theoretical results

This section enumerates three new theorems about the
average number of frequent or closed patterns in a ran-
dom database. Results in the BERNOULLI model always
involve explicit constants. On the other hand, results with
the MARKOVIAN model express with theoretical constants
related to the transition matrix.

Theorem 1 (Fixed threshold). Fix a thresholdγ and sup-
pose that the hypothesisH1 is fulfilled. Then, the aver-
age number of frequent patternsFm,n,γ in a BERNOULLI

database of parameterp or in a MARKOVIAN database
with matrix transitionP is polynomial in the number of
transactions and exponential in the number of items,

Fm,n,γ ∼ c0
nγ

γ!
θm, θ > 1.

In the BERNOULLI model,θ = 1 + pγ and c0 = 1. In
theMARKOVIAN model,θ is the dominant eigenvalue of a
strictly positive matrix andc0 is related to dominant spec-
tral objects.

This average result is standard with the intuition given by
the worst case: according to the number of items, there is an
exponential quantity of frequent patterns. This phenomena
is well known, and the difficulty of pattern mining lies in
the size of the item setI. This theorem also shows that the
number of frequent patterns polynomially depends on the
number of transactions. This is coherent with the complex-
ity of A-PRIORI regarding the number of database scans,
equal to the maximum pattern length. The results with a
proportional frequency threshold are more surprising:

Theorem 2 (Proportional threshold). Fix r ∈]0, 1[ and
suppose that the hypothesisH1 is fulfilled. Finally, suppose
that the frequency threshold satisfiesγ = r ·n. Then, the av-
erage number of frequent patternsFm,n,γ in a BERNOULLI

database of parameterp or in a MARKOVIAN database
with matrix transitionP is at most polynomial in the num-
ber in the number of items with an upper bound that does
not involve the number of transactions,

Fm,n,γ ≤ c1m
s.

In theBERNOULLI model, it is an equivalence as soon asr
is not a power ofp. Thenc1 = 1/s! ands = blog r/ log pc.

Theorem 2 is an unexpected result. Indeed, experiments
usually highlight a very important number of frequent pat-
terns, even with such a proportional threshold. It is never-
theless not sufficient to conclude that this quantity is expo-
nential. When the thresholdγ varies from1 to n, the num-
ber of frequent patterns goes from an exponential behaviour



to a constant one. Theorem 2 suggests that a proportional
threshold is sufficient to get a polynomial behaviour.

We finish this section with a theorem concerning the
closed patterns in the BERNOULLI model.

Theorem 3 (Closed patterns).For γ > (1+ ε)
log m

| log p|
, the

number of closed patterns,Cm,n,γ and frequent patterns
are equivalent,

Cm,n,γ ∼ Fm,n,γ .

With the uncorrelated model of BERNOULLI, the num-
ber frequent and closed patterns coincide. In real databases,
closed patterns are yet well known to be very few than fre-
quent patterns and allow to design very efficient mining
algorithms because they synthesise the correlations in the
data. Mining the closed pattern is more complicated than
for the frequent patterns, and it is not justified for the uncor-
related databases.

Corollary 1. With a proportional thresholdγ = r · n, the
average number of closed patternsCm,n,γ is polynomial in
the number of items:

Cm,n,γ ∼ ms

s!
where s = blog r/ log pc.

For a large enough frequency thresholdγ, the number of
frequent patterns is almost equal to the number of closed
patterns. Experiments with classical synthetic databases
T10I4D100K andT40I10D100K confirm the theoretical
result [8] since synthetic data are almost without correla-
tions. On the other hand, the theorem does not reflect the
real behaviour ofPumsb (another dtabase concerning fault
diagnosis problem of electro-mechanical devices), because
this dataset does not follow our uncorrelated model and the
same remark applies with the baseConnect .

4 Conclusion

In this article, we have given three new results about the
average number of frequent and closed patterns in random
databases. It is the first time that such analysis is performed.
Two probabilistic models were studied: a BERNOULLI

model that generates uncorrelated databases and a MARKO-
VIAN model, where close items are correlated. These mod-
els are far from real life but give new fruitful information
for the pattern mining. In particular, we proved that for a
fixed frequency threshold, the number of frequent patterns
is polynomial in the number of transactions and exponential
in the number of items. On the other hand, if the frequency
threshold is proportional to the number of transactions, the
average number of frequent patterns admits a polynomial
behaviour. This last result is unexpected for specialists
that commonly refer to the worst case and its exponential
growth.

The average number of frequent patterns is quite inter-
esting to evaluate the complexity of A-PRIORI. In order to
be complete, we also need to evaluate the size of the nega-
tive border, and it is a work in progress. In the same field,
we are also interested in many other open problems, such
as the number of closed patterns for a fixed threshold and
for other probabilistic models, the average size of the pos-
itive border, the average size of the largest frequent (which
corresponds to the number of steps for A-PRIORI), etc.
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