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Résumé : Frequent and closed patterns are at the core of numerous Knowledge
Discovery processes. Their mining is known to be difficult, because of the huge
size of the search space, exponentially growing with the number of attributes.
Unfortunately, most studies about pattern mining do not address the difficulty
of the task, and provide their own algorithm. In this paper, we propose some
new results about the average number of frequent patterns, by using probabilistic
techniques and we extend these results to the number of closed patterns. In a first
step, the probabilistic model is simple and far from the real life since the attri-
butes and the objects are considered independent. Nevertheless according to this
model, frequency threshold phenomena observed in practice are explained. We
also prove that, for a fixed threshold, the number of frequent patterns is asymp-
totically exponential in the number of attributes and polynomial in the number of
objects whereas, for a frequency threshold proportional to the number of objects,
the number of frequent and closed patterns is asymptotically polynomial in the
number of attributes without depending on the number of objects.

Mots-clés : data mining, average analysis, frequent and closed patterns

1 Introduction

In Knowledge Discovery in Databases, the goal is to find information in databases
which describe the objects under study with their attributes. More precisely, we are
trying to find interesting conjunctions of attributes, called patterns. These patterns are
more or less present in the database, and are qualified by their frequency : it is the
number of objects containing the pattern. When this quantity rises above a user-defined
threshold, the pattern is said frequent.

Among others, frequent patterns are at the core of many data mining processes. They
give a first piece of information, telling that some conjunctions of attributes are signifi-
cantly present in the data. They are very useful, e.g. for the association rules discovery,
which can ground classification methods. Frequent pattern mining has been well stu-
died, because it is the first stage leading to association rules. Finding these patterns is
algorithmically hard, while it is easy to derive association rules from them. In fact, the
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search space is exponentially large with the number of attributes, and becomes rapidly
intractable.

In this article, we are also interested in closed patterns. A closed pattern is the maxi-
mal pattern (w.r.t. the inclusion) of the set of patterns having the same frequency and
sharing the same attributes. When they are associated with the corresponding pattern
of objects containing the pattern of attributes and being also closed, both constitute a
concept. Conceptual learning is a hot topic (Wille, 1992), and closed patterns is an easy
way to non redundant association rules (Zaki, 2000). Their mining has then been widely
examined (Kuznetsov & Obiedkov, 2002; Fu & Mephu Nguifo, 2004).

Unfortunately, most studies about pattern mining provide their own solution for sol-
ving the mining problem, and sometimes give the complexity of their algorithm, but the
theoretical aspects of the difficulty of mining is rarely addressed. The exponential size
of the search space is always recalled but only gives an upper bound on the number of
frequent patterns, furthermore in the worst case.

In this article, we propose new results about the average number of frequent patterns,
by using probabilistic techniques. We also give the average number of concepts (or clo-
sed patterns, see Section 2) for a frequency threshold proportional to the number of
objects. We will see that these results confirm the intuition about the difficulty of the
task, by showing that the number of patterns is exponentially large with the number of
attributes, and polynomial with the number of objects. Besides, if the frequency thre-
shold is a proportion of the number of objects (10% for example), the average number
of frequent patterns is polynomial with the number of attributes, without depending on
the number of objects.

The organization of this paper is as follows : we present in Section 2 some definitions
and properties about pattern mining in databases, and give the main results of our work
in Section 3. We change the model by adding more constraints in Section 4 and end the
presentation with some open problems (Section 5). Section 6 is a short conclusion and
Appendix A and B gather the proofs of the theorems.

2 Preliminaries

2.1 Notations

A database contains the objects under study, which are described by their attributes.
It is usually a boolean matrix, where objects are drawn on the rows, and the binary
attributes are the columns. We will not discuss here about the methods for obtaining
such a boolean matrix, starting from continuous or multi-valued attributes (see (Srikant
& Agrawal, 1996) for an example).
In this article, we will have to distinguish two frameworks :

1. the transactional (consumer bag) framework is the most classical : objects are
called transactions and represent a list of purchase. Every bought product is an
attribute, and is often called item. It is absent or present in the transaction ;

2. the attribute/value framework is related to the database domain : every continuous
attribute is discretized and transformed into several new boolean attributes.



We will yet use the same notation for both frameworks considering that, at the end,
we only use boolean attributes. We will come back again to the differences between
both frameworks when specifying the probabilistic model (see Section 3.2). The set of
attributes is denoted A = {1..m} and the set of objects is O = {1..n}. A pattern is a
subset of A, and the collection of patterns is denoted by 2A.

A database is a subset of A × O and can be represented by a n × m matrix
(χi,j)i=1..n,j=1..m. We can also consider that a database is a set of transactions ; then
we will write that a pattern A is supported by a transaction T if A ⊂ T . The support
of A is the set of all transactions containing A, and the frequency of A is the size of its
support. A is said to be γ-frequent if its frequency is over a user-defined threshold γ :

Definition 1 (frequent pattern)
Let B = (χi,j)i=1..n,j=1..m be a binary database with m items and n transactions and
γ a strictly positive integer. A γ-frequent A is a pattern such that |support(A)| ≥ γ.

During the demonstrations, we will use a matrix vision of the support : for all j in A
and i in support(A), χi,j = 1, and for all i in O\support(A), there exists j in A such
that χi,j = 0.
We now give, in this framework, the definition of a γ-closed pattern :

Definition 2 (frequent closed pattern)
Let B = (χi,j)i=1..n,j=1..m be a binary database with m items and n transactions and
γ a strictly positive integer. A pattern A is γ-closed if :

– A is γ-frequent pattern,
– for all j in A\A, there exists i in support(A) such that χi,j = 0.

2.2 Pattern mining

The first and most popular algorithm for mining frequent patterns is A-PRIORI (Agra-
wal & Srikant, 1994). The key idea is to use the anti-monotonous property of the fre-
quency constraint, which entails that every subset of a frequent pattern is frequent as
well, or reciprocally that a superset of an infrequent pattern is infrequent. Starting from
frequent items, candidate patterns with two items are built and their frequency is che-
cked in the database. When a candidate is not enough present, its supersets are pruned
and will not ground any further candidate. New candidates are produced by joining two
frequent patterns having the same prefix, and again checked in the database, etc.

With this method, patterns are mined with a level-wise strategy, computing them by
increasing size. A-PRIORI requires only one database scan to check all candidates at
each level : there will be as much database scans as the size of the largest frequent
pattern. If we consider that the bottleneck of such a method lies in database accesses,
the complexity of A-PRIORI regarding this criteria is good.

The concept of positive and negative border is very useful, in order to more precisely
analyze the complexity. The positive border gathers the maximum frequent patterns,
with respect to the inclusion order. The negative border offers a dual vision : it brings
together the minimum infrequent patterns. Gunopulos et al. have shown that mining
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the frequent patterns requires as many database accesses as there are elements in both
borders (Gunopulos et al., 1997a).

Since twenty years, closed pattern mining is well studied, but the known methods
provide all closed patterns, while we are, in the context of data mining, only interested
in the most frequent. Recent works combine both approaches, and the closed patterns
can also be mined in a level-wise manner, by using the free (Calders & Goethals, 2003)
or key patterns (Pasquier et al., 1999), because they are the generators of the closed
patterns.

2.3 Related work

We recall in this section some results about the complexity of frequent pattern mining.
As we will see, we are aware about the difficulty of the mining task : Gunopulos et al.
have shown that deciding whether there exists a frequent pattern with t attributes is
NP-complete (Gunopulos et al., 1997b; Purdom et al., 2004). The associate counting
problem is #P-hard. But we are not really aware about the number of frequent patterns.
In fact, as far as we know, there does not exist such results in the literature.

The reason is that the search space is well known to be exponentially large with the
number of attributes, and the worst case (e.g. a database where χi,j = 1 for all i and j,
see Figure 1-a) gives 2m − 1 frequent patterns (with the minimum frequency threshold
γ = 1). In the middle matrix where χi,i = 0 (see Figure 1-b), there are 2m − 2 closed
patterns (with γ = 1). Finally, in the matrix of the Figure 1-c (Boros et al., 2002),
there are k maximal frequent patterns (k is such that n = kγ), 2k − 2 closed patterns,
and more than 2k(l−1) frequent patterns (l is such that m = kl). Of course, it is a
pathological example, but we have here a situation where the number of closed patterns
is exponentially larger than the number of maximal patterns, and the number of frequent
patterns is again exponentially larger than the number of closed patterns.

γ

(a) (b) (c)

lm m

n

FIG. 1 – Three worst cases for pattern mining (when it is filled, it means that there are
1 in the matrix, otherwise there are 0).

Average analysis considerations might then provide interesting results. We found one
such study (Purdom et al., 2004), but it is related to the failure rate of A-PRIORI. It is
useful for predicting the number of candidates that the algorithm will have to check.



This work confirms the results of (Geerts et al., 2001), who used an upper bound. On
other hand, in the seminal paper (Agrawal et al., 1996), the authors of the A-PRIORI

algorithm have explained that there are very few long patterns in a random database,
and we will reuse the same probabilistic model.

We end this section with quoting (Dexters & Calders, 2004), which gives bounds on
the size of the set of k-free patterns (Calders & Goethals, 2003). The authors provide
a link between the number of free patterns and the maximum length of such a pattern.
Even if this work is hard to relate to ours, we will have to investigate it further.

3 Results with the transactional framework

3.1 Hypothesis

In the following, we are interested in computing the average number of frequent and
closed patterns, with respect to a certain minimum frequency threshold γ. All the pro-
vided results are asymptotic (i.e. for n and m large) so that the way the frequency
threshold is growing with n is important. In practice, two cases are generally distingui-
shed :

Hypothesis 1 (fixed case)
γ is fixed and small when compared to the number n of objects.

For example, γ can be fixed to ten transactions, when there are 100 000 transactions
in the database.

Hypothesis 2 (proportional case)
γ is a ratio of n. In this case, we will say that there exists r ∈]0, 1[ such that γ = rn.

Since we do not have infinite databases, the percentage r must not be too small in
practice. Nevertheless in our theoretical framework, r can be taken as small as we want
but the speed of convergence of our asymptotics decelerates. The distinction between
both hypothesis will be useful during the proof of our results : if γ is fixed and small,
some approximation can be performed which could not be made if it is a percentage of
n. When γ is a ratio of n, some threshold phenomena appears in an integral, which can
be exploited by a Laplace’s method.

Figure 2 shows the difference between a fixed γ and a variable one. The whole set
of (closed) patterns is a lattice where all the patterns with the same cardinality are
present on the same horizontal line. Besides, the most general patterns which have the
lowest cardinality, are in the top of the lattice. Thus, the lattice may be represented by a
rhombus and frequent (closed) patterns correspond to the grey superior part. This figure
emphasizes the fact that a variable γ cuts the lattice with preserving the same proportion
between both parts. With a fixed γ, this proportion is no longer preserved.

We also have to safely define the ratio between the number of objects and the number
of attributes. We therefore require from n and m that they are polynomially linked, i.e.
there exists a constant c such that log m ∼ c log n. Let us note that this assumption is
only useful for the asymptotic provided in the Theorem 1.
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γ=rn

FIG. 2 – Difference between a fixed γ and a variable one (the empty set is at the top
of the lattice, and the complete set of attributes is at the bottom. In the case where γ is
fixed, the white parts of the lattices, which gather the infrequent patterns, seem to have
an equal size, but it is false in practice)

3.2 Probabilistic model

We assume in this section that we are in the transactional framework. The probabilis-
tic model we now describe is very simple. Since we can not appreciate in advance the
correlations existing in real databases,we will suppose that :
The database (χi,j)i=1..n,j=1..m forms an independent family of random variables
which follows the same Bernoulli law of parameter p in ]0, 1[.

Figure 3 provides an example of such a transactional database on the left chart : there
is no constraint w.r.t. the columns on the number of 1 in each line. This model is far
from the reality. Indeed, an equivalent in Information Theory is to modelize the French
language with a memoryless source that respects the probability of each letter. The
result is not very good but theoretical analysis can be yet lead. In the Section 4, this
model is improved in order to handle items coming from continuous or multi-valued
attributes. Nevertheless, we will again suppose that the objects are independent.

3.3 Results

This probabilistic model leads to a simple analysis of the average number of γ-closed
and γ-frequent patterns. The next theorem sums up our first result for a fixed frequency
threshold.

Theorem 1
If the positive integer γ is fixed (hypothesis 1, Section 3.1) and if there exist a constant
c such that log m ∼ c log n, then for large n and m, the average number of γ-frequent
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FIG. 3 – Transactional and attribute modelizations of databases (a grey square corres-
ponding to a 1 in the matrix)

patterns Fm,n,γ satisfies

Fm,n,γ ∼
(

n

γ

)
(1 + pγ)m

This theorem states that the average number of γ-frequent patterns is asymptotically
exponential in the number of attributes and polynomial in the number of objects. This is
not really surprising, because we already had this intuition when we studied the search
space (which is exponentially large with the number of attributes). Remark nonetheless
that the average behavior is far from the worst case, which is 2m. In addition, the denser
the matrix is, the more frequent patterns there are : this is natural. Let us notice that the
corresponding proof (see Appendix A) provides the exact asymptotic :

Fm,n,γ =

(
n

γ

)
(1 + pγ)m

[
1 + O

(
n

(
1 + pγ+1

1 + pγ

)m)]

The following theorem gives a link between the average number of γ-closed patterns
and the number of γ-frequent patterns :

Theorem 2
If γ satisfies γ > b(1 + ε) log m/| log p|c for an ε strictly positive, then the average
number of γ-frequent patterns and the average number of γ-closed patterns Cm,n,γ are
equivalent,

Cm,n,γ ∼ Fm,n,γ .

We now detail the result of this theorem with the help of the database T10I4D100K,
which has n = 100000 objects, m = 1000 attributes, and its density is p = 0.01. This
dataset is generated by Srikant’s synthetic data generator (Agrawal & Srikant, 1994),
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and is available on the FIMI website1. We used this dataset to illustrate our aim since it
has a large number of objects and attributes.

The threshold blog m/| log p|c for γ involved in the theorem 2 is in practice very
low w.r.t. the number of objects. For instance, the theorem applies on T10I4D100K
when γ > 1.5. We mined the frequent and the closed patterns in this dataset with Uno’s
implementations for the FIMI (Uno & Satoh, 2003) and plotted on the Figure 4 the
number of patterns, w.r.t. the threshold γ. When γ is greater than 20, we can see that
the number of frequent patterns and the number of closed pattern are almost the same.

average number

minimum support threshold

 1
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 1  10  100  1000  10000

frequent patterns
closed patterns

FIG. 4 – Average number of frequent/closed patterns on T10I4D100K

It is hard to give an intuition of this surprising result, because it is justified by an
approximation which can be realized on the asymptotic (see demonstration on Appen-
dix A). This phenomena can be explained by the poorness of our probabilistic model,
which does not handle correlations. Closed patterns are normally useful, because they
can summarize correlations. In the conditions of the theorem, almost all the frequent
patterns are also closed and A-PRIORI has a better behavior than those algorithms based
on the closed patterns.

Now, we consider the average number of patterns with the second hypothesis :

Theorem 3
If γ satisfies γ = brnc with r ∈]0, 1[ (hypothesis 2, Section 3.1), then the average
number of γ-closed patterns and γ-frequent patterns satisfies for large m and n

Cm,n,γ ∼ Fm,n,γ ∼
(

m

j0

)
, where j0 =

⌊
log r

log p

⌋
.

In other words, j0 is such that pj0+1 < r < pj0 .

1Frequent Itemset Mining Implementations is a workshop of the IEEE International Conference on Data
Mining (ICDM) http ://fimi.cs.helsinki.fi/



This theorem is very important, because it states that the average number of frequent
patterns (and closed patterns) is polynomial with the number m of attributes for a
frequency threshold proportional to the number of objects. This is again surprising,
because the search space is theoretically exponentially growing with m. Besides, this
average number of frequent patterns does not depend on the number n of objects. In the
future, we will reuse this result to justify applications of sampling techniques.

4 Results with the attribute/value framework

The preceding results show that our model can be improved. We now try to handle
correlations in the data.

In practice, items often come from continuous attributes, that are split. For instance,
the attribute size of the patient can be split into three items small, medium, tall. The
previous modelization allowed a patient to be small and tall at the same time, while it is
impossible. The new modelization considers these kinds of correlations. Nevertheless,
we restrict ourselves to the case where all multi-valued or continuous attributes lead to
the same number of boolean attributes t > 1. On the right chart, Figure 3 proposes an
example of dataset where t = 3 : there can be only one 1 in each triple of columns.

Since all the original attributes have the same size t, there exists one positive integer
m1 such that the number m of boolean attributes satisfies m = m1t. The new probabi-
listic model is based on the following hypothesis :

The database (∆i,j = (χi,tj+1, χi,tj+2, . . . , χi,tj+t))i=1..n,j=0..m1−1 forms an in-
dependent family of random variables with the same uniform law on the set composed
with the sequences of size t with only one one and (t−1) zeros (the density of the matrix
is 1

t ).

Once more, this model is far from the reality but its equivalent one in Information
Theory would be to modelize the French language by a memoryless source that emits
trigrams (if t = 3) according to their probability. The result is then better than our first
modelization.

Using this model, our results are similar to the previous section. The proofs are also
similar (see Appendix B).

Theorem 4
If the positive integer γ is fixed, then the average number of γ-frequent patterns Fm,n,γ

satisfies for large m and n

Fm,n,γ =

(
n

γ

)(
1 +

(
1

t

)γ−1
)m1 [

1 + O

(
n

(
1 + (1/t)γ

1 + (1/t)γ−1

)m1
)]

Theorem 5
If γ satisfies γ > b(1 + ε) logm1/ log tc for an ε strictly positive, then the average
number of γ-frequent patterns and the average number of γ-closed patterns Cm,n,γ are



CAp 2005

equivalent,
Cm,n,γ ∼ Fm,n,γ .

Theorem 6
If γ satisfies γ = brnc with r ∈]0, 1[ which is not a power of p, then the average number
of γ-closed patterns and γ-frequent patterns satisfies

Cm,n,γ ∼ Fm,n,γ ∼
(

m1

j0

)
tj0 , where j0 =

⌊− log r

log t

⌋
.

Theorems 4, 5 and 6 show that the behavior of the asymptotics are very close to those
proposed with the former modelization. Nevertheless, the number of γ-frequent patterns
with the new model is exponentially lower for fixed γ. Indeed, the factor between the
two modelizations is given by

(
(1 + (1/t)γ−1)1/t

1 + (1/t)γ

)m

= δm with δ < 1

It let us think that correlations entail an exponential decay on the number of frequent
patterns (even if δ is near 1). Thus, this new model really refines the previous results.

Finally with γ = brnc, the asymptotic is the same than in the first modelization and
then, still polynomial.

5 Open problems

We now focus our intention on problems that we did not treat here or manage to
solve :

1. What is the average number of γ-closed patterns for fixed γ ? Our feeling is that
this number is asymptotically equivalent to the number of closed patterns of size
around log n/| log p| and frequency around log m/| log p|.

2. What is the average number of γ-closed/frequent patterns for other function γ
such that γ =

√
n ? The proof of Theorem 3 might be adapted to this context. In

particular, the integer j0 was chosen such pj0+1 < (γ − 1)/(n − 1) ≈ r < pj0 .
By extension, fixing j0 = logp(γ − 1)/(n − 1) we suppose that the number of
frequent patterns is

(
m
j0

)
.

3. What is the average size of the biggest frequent pattern ? It corresponds to the
number of steps that A-PRIORI Algorithm performs.

4. The positive border is the set of γ-frequent patterns (or equivalently γ-closed
ones) whose all supersets are infrequent. What is the average cardinal of the po-
sitive border ? This average is given by

m∑

j=1

(
m

j

) n∑

i=γ

(
n

i

)
pij(1 − pj)n−i

(
γ−1∑

u=0

(
i

u

)
pu(1 − p)i−u

)m−j

.

For r > p, it tends to zero but for r < p, the term (
∑

)m−j goes from 0 to 1
around i = pn. We did not manage to find the asymptotic.



5. The negative border is the set of patterns which are not γ-frequent, and whose
all subsets are γ-frequent patterns. What is the average cardinal of the negative
border ?

Of course, this list is not exhaustive.

6 Conclusion

In this paper, we gave the average number of frequent or closed patterns in a data-
base, according to the frequency threshold, the number of attributes, objects, and the
density of the database. We first used a simple model for the database, consisting in an
independent family of Bernouilli random variables. We also provided the results with
an improved modelization handling correlations in the attributes.

Our asymptotic results are useful in order to better understand the complexity of
the frequent or closed pattern mining task. They explain the efficiency of the frequent
pattern mining compared to the closed pattern one on databases close to our models.
Furthermore, we emphasized the gap between two choices for the minimal frequency
threshold (fixed or not) when the size of pattern lattice grows. In the first case, the
average number of patterns is exponential with the number of attributes and polynomial
with the number of objects. In the second case, it only polynomially depends on the
number of attributes.

In further work, we want to take into account the correlations between objects in order
to study the frequent and closed pattern mining on corresponding databases. Besides,
we would like to propose a sampling method to estimate the number of patterns starting
from a database and a minimum frequency threshold.

A Proofs with the transactional framework

We now prove the theorems. Let us recall that n and m are polynomially linked,
i.e. there exist a constant c such that log m ∼ c log n. Thus in the following, both
parameters tend to infinity. The first lemma gives simple formulae directly deduced
from the definitions for the average number of γ-frequent patterns and γ-concepts. This
lemma is sufficient to show the result 2. The second lemma is an integral reformulation
of a part of the previous formulae. The third lemma gives asymptotics for the integral
part. Finally, we prove the theorem.

Lemma 1
The average number of γ-frequent patterns satisfies

Fm,n,γ =

m∑

j=1

(
m

j

) n∑

i=γ

(
n

i

)
pij(1 − pj)n−i.

The average number of γ-concepts satisfies

Cm,n,γ =

m∑

j=1

(
m

j

) n∑

i=γ

(
n

i

)
pij(1 − pi)m−j(1 − pj)n−i.
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Proof 1 (Lemma 1)
Fix (A, O) a γ-frequent pattern. The cardinal of a set E is noted |E|. Since O is the
support of A, for all index in A × O, there is a one in the matrix. But the probability
o having a one is p so that the probability of having a one at each index of A × O

is p|A||̇O|. In addition, O is the greatest set containing all the items of A, so that for
all transactions in O\O, there is at least one zero at an index of A. The probability of
satisfying this last condition is (1 − p|A|)n−|O|.

If (A, O) is a concept, the probability that A is the greatest set containing O is by
symmetry (1− p|O|)m−|A|. Now, summing over all the possible cardinalities for A and
O, we get both formulae.

Proof 2 (Theorem 2)
Both formulae are sufficient to prove Theorem 2. Indeed, if γ satisfies γ > b(1 +
ε) log m/| log p|c for an ε strictly positive, then

(1 − pi)m−j ≤ (1 − p(1+ε) log m/| log p|−1)m−j

= (1 − 1

pm1+ε
)m−j

→ 1.

Theorem 2 follows from this equivalence.

The next lemma expresses the sum over i in Fm,n,γ with an integral. This is the key
point of all the proofs, since the way we approximate the integral leads to two different
asymptotics for γ fixed or linear.

Lemma 2
One has the integral equality :

n∑

i=γ

(
n

i

)
xi(1 − x)n−i = γ

(
n

γ

)∫ x

0

tγ−1(1 − t)n−γdt.

Proof 3 (Lemma 2)
Expanding (1 − x)n−i leads to

n∑

i=γ

(
n

i

)
xi(1 − x)n−i =

n∑

i=γ

(
n

i

) n−i∑

u=0

(
n − i

u

)
(−1)uxi+u.

Now, the change of variable v = u + i and the inversion of both signs sum gives the
new equality

n∑

i=γ

(
n

i

)
xi(1 − x)n−i =

n∑

v=γ

(
n

v

)
xv

v∑

i=γ

(
v

i

)
(−1)v−i.

A simple induction shows that the second sum simplifies into

(−1)v−γ

(
v − 1

γ − 1

)
.



Hence, the previous inequality becomes

n∑

i=γ

(
n

i

)
xi(1 − x)n−i =

n∑

v=γ

(
n

v

)
xv(−1)v−γ

(
v − 1

γ − 1

)
.

Now, the binomials simplify,
(
n
v

)(
v−1
γ−1

)
= γ

v

(
n
γ

)(
n−γ
v−γ

)
and the change of variable w =

v − γ gives the new expression

n∑

i=γ

(
n

i

)
xi(1 − x)n−i = γ

(
n

γ

) n−γ∑

w=0

(
n − γ

w

)
(−1)w xw+γ

w + γ
.

To conclude, remark that the second sum is zero when x = 0 and that the derivative
according to x is exactly xγ−1(1 − x)n−γ . The lemma follows.

We can now prove Theorem 1.

Proof 4 (Theorem 1)
Let f be the function f(x) = (1− x)n−γ . The sign of the derivatives of f alternates so
that, the Taylor expansion of f entails the bounds,

2k+1∑

l=0

f (l)(0)

l!
xl ≤ f(x) ≤

2k∑

l=0

f (l)(0)

l!
xl

for all positive integer k. Now the derivatives satisfy f (l)(0) = (−1)l(n − γ) . . . (n −
γ − l + 1)xn−γ−l. A bound of the integral formula is then

∫ x

0

tγ−1(1 − t)n−γdt ≈
∫ x

0

2k+1∑

l=0

f (l)(0)

l!
tl+γ−1dt

=
2k+1∑

l=0

(
n − γ

l

)
(−1)l xl+γ

l + γ
.

Applying Lemma 2 with Fm,n,γ , using the previous bounds and summing over j in
Fm,n,γ finally gives

Fm,n,γ ≈ γ

(
n

γ

) 2k+1∑

l=0

(
n − γ

l

)
(−1)l (1 + pl+γ)m − 1

l + γ
.

In particular for k = 0, one has
(

n

γ

)
((1+pγ)m−1)−γ

(
n

γ

)(
n − γ

1

)
(1 + p1+γ)m − 1

1 + γ
≤ Fm,n,γ ≤

(
n

γ

)
(1+pγ)m−1.

To conclude, the condition log m ∼ c log n entails that the binomials are polynomial
in m and it is negligible compared to the exponential part. This finishes the proof of
Theorem 1.
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The last lemma describes the asymptotic of the integral when n is large.

Lemma 3
Suppose that γ satisfies γ = brnc with r a non-power of p.
For x > r, ∫ x

0

tγ−1(1 − t)n−γdt =
1

γ
(
n
γ

) (1 + εn(x)),

with (εn)n a sequence of decreasing functions that converges uniformly to zero.
For x < r, ∫ x

0

tγ−1(1 − t)n−γdt =
exp(ngn(x))

ng′n(x)
(1 + ε̃n(x)),

with (ε̃n)n a sequence of increasing functions that converges uniformly to zero and

gn(x) =
γ − 1

n
log x +

n − γ

n
log(1 − x).

Proof 5 (Lemma 3)
This lemma is the well known Laplace Method. The proof is then let to the reader.

We finally prove Theorem 3.

Proof 6 (Theorem 3)
Integer j0 is (asymptotically) the lowest integer j such that pj > r. By Lemma 1 and
Lemma 2, the average number of frequent patterns satisfies

Fm,n,γ =

n∑

j=1

(
m

j

)
γ

(
n

γ

)∫ pj

0

tγ−1(1 − t)n−γdt.

The sum is then split into two sums
∑j0

j=1 +
∑m

j=j0+1 and the use of lemma 3 provides
the equivalence

Fm,n,γ ∼
j0∑

j=1

(
m

j

)
+

m∑

j=j0+1

(
m

j

)
γ

(
n

γ

)
exp(ngn(pj))

ng′n(pj)
.

The first sum is equivalent to
(

m
j0

)
since j0 is constant. A simple upper bound gives the

inequality for the second sum,

m∑

j=j0+1

(
m

j

)
exp(ngn(pj))

ng′n(pj)
≤ 1

γ − 1 − pj0(n − 1)

m∑

j=j0+1

(
m

j

)
pγj(1 − pj)n−γ+1.

Now, an equivalent of the right sum is

m∑

j=j0+1

(
m

j

)
pγj(1 − pj)n−γ+1 ∼

(
m

j0 + 1

)
pγ(j0+1)(1 − pj0+1)n−γ+1. (1)



Indeed, let wj =
(
m
j

)
pγj(1 − pj)n−γ+1. The ratio wj+1/wj is decreasing with j and

the ratio wj0+2/wj0+1 satisfies

wj0+2

wj0+1
=

m − j0 − 2

j0 + 3
exp(nθ(γ, n, p, j0))

with θ(γ, n, p, j0) =
γ

n
log p +

n − γ + 1

n
log(1 + pj0+1 1 − p

1 − pj0+1
).

Using that γ/n tends to r as n tends to infinity and that pj0+1 < r, the function θ is
shown to converge to a strictly negative constant. Hence, the ratio wj0+2/wj0+1 tends
to zero as n tends to infinity what is sufficient to prove the equivalent of Formula (1).
The Stirling formula applied with the binomial

(
n
γ

)
entails the equivalent

(
n

γ

)
p(j0+1)γ(1 − pj0+1)n−γ ∼

√
1

2πr(1 − r)n

(
pj0+1n

γ

)γ (
1 − pj0+1

1 − (γ/n)

)n−γ

= exp(nθ̃(γ, n, p, j0)),

where θ̃(γ, n, p, j0) =
γ

n
log

pj0+1n

γ
+ (n − γ) log

1 − pj0+1

1 − (γ/n)
.

Finally, since for all positive x, log x ≤ x − 1 and log 1 + x ≤ x, the function θ̃ is
proved to converge to a strictly negative number. It follows that

γ

(
n

γ

) m∑

j=j0+1

(
m

j

)
exp(ngn(pj))

ng′n(pj)
→ 0.

which finishes the proof of Theorem 3.

B Proofs with the attribute/value framework

The proofs are exactly identical. The only change is the first formula for the average
number of frequent patterns or concepts.

Lemma 4
The average number of γ-frequent patterns satisfies

Fm,n,γ =

m1∑

j=1

tj
(

m1

j

) n∑

i=γ

(
n

i

)(
1

t

)ij

(1 −
(

1

t

)j

)n−i.

The average number of γ-closed patterns satisfies

Cm,n,γ =

m1∑

j=1

(
m1

j

) n∑

i=γ

(
n

i

)(
1

t

)ij

(1 −
(

1

t

)i

)m1−j(1 −
(

1

t

)j

)n−i.

All the previous proofs extend to these formulae.
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